350 rub
Journal Neurocomputers №3 for 2015 г.
Article in number:
Resource load prediction in computer cloud using Elman networks teached by artificial immune systems
Authors:
R.I. Khantimirov - Post-graduate Student, Moscow State University of Economics, Statistics and Informatics. E-mail: ramilkh@gmail.com
Abstract:
A new approach to forecast resource load in computer clouds is proposed, based on Elman networks teached by artificial im-mune systems.
Pages: 59-64
References

 

  1. KHantimirov R.I.Zadacha vydelenija resursov v oblachnykh sredakh na osnove metoda analiza ierarkhijj [v pechati].
  2. Zhen Xiao, Weija Song and Qu Chen. Dynamic Resource Allocation using Virtual Machines for Cloud Computing Environment // IEEE transaction on parallel and distributed systems (TPDS). June, 2013.
  3. Nazarov A.V., Loskutov A.I. Nejjrosetevye algoritmy prognozirovanija i optimizacii sistem. SPb.: Nauka i tekhnika. 2003. 384s.
  4. Vasilev V.I.Intellektualnye sistemy zashhity informacii. Izd. 2-e. M.: Mashinostroenie. 2013. 171 s.
  5. EHshbi U.R.Vvedenie v kibernetiku: per s angl. Izd. 2-e. M.: Mir. 1991. 586 s.
  6. Yu L., Wang S., Lai K. K.Credit risk assessment with a multistage neural network ensemble learning approach // Expert System with Applications. 2008. № 34. S. 1434-1444.
  7. Bouirouga et al. Comparison of performance between different SVM kernels for the identification of adult video // World Acad. Sci. Eng. Technol. 2011. № 77. S. 37-40.
  8. Elman J. Finding structure in time // Cognitive Science. 1990. V. 14. № 2. S. 179-211.
  9. Lin F.J. et al. Recurrent wavelet-based Elman neural network control for multi-axis motion control stage using linear ultrasonic motors // IET Electr. Power Appl. 2010. V. 4. № 5. S. 314-332.
  10. Sanjib Mishra. Short Term Load Forecasting Using Computational Intelligence Methods. Department of Electronics and Communication Engineering National Institute of Technology. Rourkela. 2008. C. 53-62.
  11. Rozhnov A.V.Nekotorye problemnye voprosy sistemnojj integracii napravlenijj nauchnojj dejatelnosti v zadachakh nejjrokompjutinga // Nejjrokompjutery: razrabotka, primenenie. 2014. № 1. S. 3-10.