350 rub
Journal Neurocomputers №6 for 2013 г.
Article in number:
Training neural network for an obstacle-avoiding autonomous mobile robot using reinforcement learning
Authors:
R.A. Munasypov, G.A. Saitova, S.S. Moskvichev, T.R. Shakhmametev
Abstract:
In this article we present an approach to the obstacle-avoidance task in unknown environment for autonomous mobile robots using reinforcement learning neural network. Q-learning is one of reinforcement learning methods widely used in autonomous mobile robotics. This method is using to train a neural network controller of a mobile robot providing it with autonomous obstacle-avoiding behavior in unknown environment. Simulation results show that the method allows the robot to achieve an efficient locomotion strategy with no collisions with the environment.
Pages: 26-30
References
- Borenstein J., Koren Y. Real-time Obstacle Avoidance for Fast Mobile Robots // IEEE Transactions on Systems, Man, and Cybernetics. 1989. V. 19. №. 5. Sept./Oct. P. 1179(1187.
- Stankevich L.A. Intellektual'ny'e roboty' i sistemy' upravleniya // Nejrokomp'yutery': razrabotka, primenenie. 2005. № 8-9. S. 54-66.
- Sutton R., Barto A. Reinforcement learning: An introduction. Adaptive Computation and Machine Learning series. MIT Press (Bradford Book). Cambridge. 1998. V. 18.
- Watkins J., Dayan P. Q-learning // Machine Learning. 1992. V. 8. P. 279-292.
- Onat A. Q-learning with recurrent neural networks as a controller for the inverted pendulum problem // The Fifth International Conference on Neural Information Processing, October 21-23. 1998. P. 83-840.
- Cervera E., del Pobil A.P. Sensor-based learning for practical planning of fine motions in robotics // Information Sciences. 2002. V. 145. Is. 1-2. P. 147-168.