350 rub
Journal Neurocomputers №4 for 2013 г.
Article in number:
Core models of bioinstrumental measurement channels in electrophysiology
Authors:
L.G. Akulov, J.P. Mukha, V.U. Naumov
Abstract:
Models of information measurement systems called bioinstrumental what used in electrophysiological investigations are described. By example of electroencephalographic system core modules specification it is given a variant of that practice construction with object approach of modern programming tools. The model is consist of: 1) several kinds of physiologic artifacts; 2) nonphysiological artifacts; 3) random noise; 4) standard rhythms forming mechanism; 5) evoked potentials model; 6) nonelectric environment influence; 7) physical model of fields transform by biological object; 8) different lead systems; 9) fast processing with and without reference signal; 10) fast signals classification. Models are describing by parts associated with signals type of system. First channel model is autoregressive dipole model of background EEG and event related potentials. Physiologic artifacts are represented by PQRST model of electrocardiogram and by EOG stored in file. Low frequency artifact of skin-electrode contact is modeled by signals formed before. Nonphysiological artifacts are represented by additive Gaussian noise and supply-line influence. In addition it is given a temperature influence on system.
Pages: 39-47
References
  1. Benkovich E. S., Kolesov JU.B., Senichenkov JU.B. Prakticheskoe modelirovanie dinamicheskikh sistem. SPb.: BKHV-Peterburg. 2002.
  2. Mukha JU. P., Akulov L. G. Model izmeritelnogo uravnenija pri issledovanii biopotencialov organizma na primere ehlektroehncefalografii // Izv. SPbGTU «LEHTI». Ser. «Biotekhnicheskie sistemy v medicine i ehkologii». 2006. Vyp. 2. S. 80-89.
  3. Akulov L. G., Tarasova I. A., Mukha JU. P. Algoritmicheskie osobennosti predstavlenija ehlektrofiziologicheskikh vremennykh rjadov v bazise funkcijj Gabora // Biomedicinskaja radioehlektronika. 2010. № 6. C. 31-37.
  4. Ugarov K. K., Akulov L. G., Litovkin R. V. Klasterizacija ehlektroehncefalograficheskikh signalov // Informatika i sistemy upravlenija. 2010. № 2. C. 149-151.
  5. ZHarinov I. O. K voprosu o vybore porjadka avtoregressionnykh modelejj signalov ehlektroehncefalogramm cheloveka (v medicinskom priborostroenii) // Nauchno-tekhnicheskijj vestnik SPb GU ITMO, 2006. Vyp. 33. S. 121-132.
  6. Blinowska, K., Durka, P.,Electroencephalography (EEG) // Wiley encyclopedia of biomedical engineering. P. 1341-1355.
  7. The Biomedical Engineering HandBook. Second Edition. Ed. Joseph D. Bronzino Boca Raton: CRC Press LLC, 2000.
  8. Gnezdickijj V. V.Obratnaja zadacha EHEHG i klinicheskaja ehlektroehncefalografija (kartirovanie i lokalizacija istochnikov ehlektricheskojj aktivnosti mozga). M.: MEDpress-inform. 2004.
  9. Nunez, P. L.,Srinivasan R. Electric fields of the brain: the neurophysics of EEG. New York: Oxford University Press. 2006.
  10. Zudbinov JU. I.Azbuka EHKG i boli v serdce. Izd. 5-e. Rostov n/D: Feniks. 2007.
  11. Mukha JU. P., Bugrov A. V. Bioinstrumentalnye adaptivnye sistemy v medicine // Biomedicinskaja radioehlektronika. 2009. № 4. C. 25-34.
  12. Akulov L. G., Mukha JU. P. Adaptivnye metody v ehlektroehncefalograficheskikh izmerenijakh // Biomedicinskie tekhnologii i radioehlektronika. 2007. № 5. S. 45-51.
  13. Akulov L. G., Litovkin R. V., Mukha JU. P. Vejjvlet-filtracija v polianalizatorakh realnogo masshtaba vremeni // Biomedicinskaja radioehlektronika. 2011. № 6. C. 33-40.