350 rub
Journal Neurocomputers №4 for 2013 г.
Article in number:
Application of trained structures to analysis of computerized testing results
Authors:
L.S. Kuravsky, P.A. Marmalyuk, V.I. Alkhimov, G.A. Yuryev
Abstract:
A new application of trained structures to computerized testing used for diagnostics and estimation of professional skills including education quality control is presented. The quality of testing and the reliability of its results strongly depend on test-taking technologies which have become an object of active scientific research in recent decades. Numerous problems following applications of traditional testing techniques inspired creation of the given approach to constructing intellectual and competence-based tests, which is based on the representation of the subject-s gaze movement on the stimulus surface supported by one of the most general varieties of stochastic processes and technologies for its further analysis. Special attention has been paid to the mathematical rationale of the methods under consideration.
Pages: 18-27
References
  1. Tjumeneva JU.A. Psikhologicheskoe izmerenie.  M.: Aspekt-Press. 2007.
  2. Gulliksen H. Theory of Mental Tests.  John Wiley & Sons Inc. 1950.
  3. Barabanshhikov V.A. EHkspressii lica i ikh vosprijatie.  M.: IP RAN. 2012.
  4. Bezrukikh M.M., Demidov A.A., Ivanov V.V. Vozrastnye osobennosti okulomotornojj aktivnosti detejj v processe chtenija  // Mater. Vseross. jubil. nauch. konf. «Psikhologija cheloveka v sovremennom mire», posv. 120-letiju so dnja rozhdenija S.L. Rubinshtejjna. 2009. T.2. S. 151-155.
  5. Rayner K. Eye movements in reading and information processing: 20 years of research // Psychological Bulletin. 1998.
    V. 124. P. 372-422.
  6. Marmaljuk P.A., Zvonkina O.M. Opornye pokazateli glazodvigatelnojj aktivnosti pri prokhozhdenii testa Ravena i avtomatizacija ikh raschjota // Materialy XI Mezhvuz. nauch.-prakt. konf. s mezhdunar. uchastiem «Molodye uchenye - nashejj novojj shkole». M.: MGPPU. 2012. S. 350-352.
  7. KHokhlova A.A. Issledovanie glazodvigatelnojj aktivnosti pri prokhozhdenii matrichnogo testa intellekta Ravena // Materialy X nauch.-prakt. mezhvuz. konf. «Molodye uchenye - nashejj novojj shkole». M.: MGPPU. 2011. S. 343-345.
  8. Patalano A.L., Juhasz B.J., and Dicke O. The Relationship Between Indecisiveness and Eye Movement Patterns in a Decision Making Informational Search Task // Journal of Behavioral Decision Making. 2010. V. 23.R 353-368.
  9. Vigneau F., Caissie A., Bors D. Eye-movement analysis demonstrates strategic influences on intelligence // Intelligence 34. 2006. P. 261-272.
  10. Brandt S.A., Stark L.W. Spontaneous eye movements during visual imagery reflect the content of the visual scene. Journal of Cognitive Neuroscience.1997. № 9. R. 27-38.
  11. Myers C.W., Schoelles M.J. ProtoMatch: A tool for analyzing high-density, sequential eye gaze and cursor protocols. Behavior Research Method.2005. № 37. R. 256-270.
  12. Ellis S.R., Stark L. Statistical dependency in visual scanning. Human Factors.1986. № 28. R. 421-438.
  13. Hayes T.R., Petrov A.A., Sederberg P.B. A novel method for analyzing sequential eye movements reveals strategic influence on Raven\'s Advanced Progressive Matrices. Journal of Vision. 2011.№ 10.R. 1-11.
  14. Cagli R.C., Coraggio P., Napoletano P., Boccignone G. What the draughtsman-s hand tells the draughtsman-s eye: A sensorimotor account of drawing. International Journal of Pattern Recognition and Artificial Intelligence. 2008. № 22.R. 1015-1029.
  15. Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE.1989. № 77.R. 257-286.
  16. Dayan P. Improving generalization for temporal difference learning: The successor representation // Neural Computation. 1993. № 5.R. 613-624.
  17. Kuravskijj L.S., Marmaljuk P.A., Alkhimov V.I., JUrev G.A. Matematicheskie osnovy novogo podkhoda k postroeniju procedur testirovanija // EHksperimentalnaja psikhologija. 2012. T. 5. № 4. S. 75-98.
  18. Kuravskijj L.S., Baranov S.N. Primenenie nejjronnykh setejj dlja diagnostiki i prognozirovanija ustalostnogo razrushenija tonkostennykh konstrukcijj // Nejjrokompjutery: razrabotka, primenenie. 2001. № 12. S. 47-63.
  19. Kuravskijj L.S., Baranov S.N. Sintez setejj Markova dlja prognozirovanija ustalostnogo razrushenija // Nejjrokompjutery: razrabotka, primenenie. 2002. № 11. S. 29-40.
  20. Kuravskijj L.S., Baranov S.N., Malykh S.B. Nejjronnye seti v zadachakh prognozirovanija, diagnostiki i analiza dannykh: ucheb. posobie. M.: RUSAVIA. 2003.
  21. Kuravskijj L.S., Baranov S.N., JUrev G.A. Sintez i identifikacija skrytykh markovskikh modelejj dlja diagnostiki ustalostnogo razrushenija // Nejjrokompjutery: razrabotka, primenenie. 2010. № 12. S. 20-36.
  22. Kuravsky L.S., Baranov S.N. Condition monitoring of the structures suffered acoustic fatigue failure and forecasting their service life // In: Proc. Condition Monitoring 2003. Oxford, United Kingdom. July 2003. R. 256-279.
  23. Kuravsky L.S., Malykh S.B. On the application of queuing theory for analysis of twin data // Twin Research, 2000. № 3. R. 92-98. 
  24. Kuravsky L.S. and Baranov S.N. The concept of multifactor Markov networks and its application to forecasting and diagnostics of technical systems //In: Proc. Condition Monitoring 2005. Cambridge. United Kingdom. July 2005. R. 111-117.
  25. Kuravsky L.S., Baranov S.N., and Yuryev G.A. Synthesis and identification of hidden Markov models based on a novel statistical technique in condition monitoring // In: Proc. 7th International Conference on Condition Monitoring & Machinery Failure Prevention Technologies, Stratford-upon-Avon. England. June 2010. 23 p.