350 rub
Journal Neurocomputers №4 for 2013 г.
Article in number:
Real-time measurements in condition of highly quantized observation data: recurrent Pittman-type estimates modification
Authors:
D.A. Masterenko
Abstract:
Results of measurements in some practical cases are highly quantized. The random scatter caused by both observed process and random error turns out to be as high as quantization step size of the measuring device. Moreover, alterations of observed value are also comparable to quantization step size. This situation is quite common for most precise measurements. In order to statistically process highly quantized observations the author proposed and considered special statistical estimates, called Pittman-type estimates. This kind of estimates made it possible to obtain more precise results compared to traditional estimates. Pittman-type estimations calculation can be realized using numerical integrating methods, up-to-date computers and software. Still, the more observations are made, the higher the computational complexity is. Moreover, the data are gathered serially in real-time measuring systems, thus the volume of data increases rapidly and new pieces of data are request recalculation of estimate. The author presents recurrent modification of Pittman-type estimates, lowering the volume of computations for real-time systems. The results of recurrent and non-recurrent estimates calculations are presented.
Pages: 9-13
References
  1. Masterenko D.A. Statisticheskoe ocenivanie rezultatov nabljudenijj s uchetom ikh diskretizacii po urovnju // Izmeritelnaja tekhnika. 2008. № 7. S.11-15.
  2. Masterenko D.A. Vybor nailuchshejj ocenki izmerjaemojj velichiny po silno diskretizovannym nabljudenijam // Izmeritelnaja tekhnika. 2011.№ 7. S. 17-20.
  3. Masterenko D.A. O podkhodakh k ocenivaniju parametrov po silno diskretizovannym nabljudenijam // Vestnik MGTU «Stankin». 2010. № 3(11). S.88-94.
  4. Masterenko D.A. Statisticheskoe ocenivanie izmerjaemykh velichin po silno diskretizovannym nabljudenijam pri neizvestnom parametre masshtaba sluchajjnojj sostavljajushhejj // Izmeritelnaja tekhnika. 2012. № 6. S.39-42.
  5. Masterenko D.A. Issledovanie ocenok izmerjaemojj velichiny po silno diskretizovannym nabljudenijam // Izmeritelnaja tekhnika. 2011. № 8. S. 22-24.
  6. Masterenko D.A. Issledovanie ocenok parametrov linejjnojj statisticheskojj  modeli po silno diskretizovannym nabljudenijam // Vestnik MGTU «Stankin». 2012. № 3(21).C. 85-89.
  7. Masterenko D.A. Statistical evaluation of observations with level quantization // Measurement Techniques. 2008. V. 51. № 7. S. 711.
  8. Emeljanov P.N., Ped S.E., KHolin I.E. Razrabotka precizionnojj koordinatno-izmeritelnojj mashiny s CHPU // Informacionno-izmeritelnye i upravljajushhie sistemy. 2012. №8.C.68-72
  9. Grigorev S.N., Masterenko D.A. Perspektivy povyshenija tochnosti izmerenijj v sovremennom avtomatizirovannom proizvodstve na osnove statisticheskikh metodov obrabotki silno diskretizovannykh nabljudenijj // Informacionno-izmeritelnye i upravljajushhie sistemy. 2012. № 9.C.60-63.
  10. Teleshevskijj V.I., Masterenko D.A. Rekurrentnoe robastnoe ocenivanie v avtomatizirovannykh izmeritelnykh informacionnykh sistemakh // Izmeritelnaja tekhnika. 1997. № 4. S. 16-19.
  11. Borovkov A.A. Matematicheskaja statistika. M.: Lan. 2010. 704 s.
  12. Fomin V.N. Rekurrentnoe ocenivanie i adaptivnaja filtracija. M.: Nauka. 1984. 286 s.