350 rub
Journal Neurocomputers №3 for 2013 г.
Article in number:
Calculation of oil system parameters of aviation GTE on the basis of neural network technology
Authors:
S.V. Zhernakov, R.F. Ravilov
Abstract:
The neural network algorithms of technical condition checking and diagnosis for aeroengine gas-turbine engines oil system are considered. The problem of complex evaluation of GTE rotor thermal condition in the neural network basis is formalized. The engineering technique for applying at the stages of stand and on-board tests of aviation GTE is proposed. The comparative analysis of neural networks and «classical» methods for checking and diagnosing parameters of Aeroengine oil system is presented. The recommendations on applying the developed method in practice are given.
Pages: 44-48
References
- ZHernakov S.V.Identifikacija kharakteristik GTD na osnove tekhnologii nejjronnykh setejj // Informacionnye tekhnologii. 2010. № 3. S.39-47.
- ZHernakov S.V., Ravilov R.F. Identifikacija kharakteristik gazoturbinnogo dvigatelja i ego masljanojj sistemy na osnove tekhnologii nejjronnykh setejj // Intellektualnye sistemy v proizvodstve. 2011. T. 17. № 1. S. 91-104.
- ZHernakov S.V., Ravilov R.F. Identifikacija obratnojj mnogorezhimnojj modeli GTD po parametram ego masljanojj sistemy na osnove tekhnologii nejjronnykh setejj // Vestnik IzhGTU. T. 51. 2011. №3.S.126-129.
- ZHernakov S.V., Kobylev S.V. Kontrol i diagnostika kompleksnykh otkazov SAU GTD s ispolzovaniem rekurrentnykh nejjronnykh setejj // Nejjrokompjutery: razrabotka, primenenie. 2011. № 10. S. 28-45.