350 rub
Journal Neurocomputers №9 for 2012 г.
Article in number:
The use of windows with an adaptive neural network for shape filtering and image interpolation
Keywords:
noise filtering
interpolation image
image processing
neural network algorithms
neural network filtering
Authors:
P.V. Skribtsov, P.A. Kazantsev, A.V. Dolgopolov
Abstract:
The article describes a generic algorithm for neural network filtering and interpolation ofimages. The choice of the form window is based on measuring the generalizingproperties of neural networks. For training neural networks using the method of extremal learning. Algorithm is shown to be effective in practice.
Pages: 60-65
References
- Нейрокомпьютеры в прикладных задачах обработки изображений / под ред. А.Н. Балухто,А.И. Галушкина. М.: Радиотехника. 2007.
- Хайкин С., Нейронные сети: полный курс. М.: Вильямс. 2006.
- Галушкин А.И. Нейрокомпьютеры. М.: Радиотехника. 2002.
- Галушкин А. И. Теория нейронных сетей. М.: Радиотехника. 2000.
- Atkins, C. B., Bouman, C. A., and Allebach J.P., Optimal image scaling using pixel classification // In IEEE International Conference on Image Processing. V. 3. P. 864-867. September 2001.
- Staelin, C., Greig, D., Fischer, M., Maurer, Ron Neural Network Image Scaling Using Spatial Errors. TechnicalReportHPL-2003-26R1 20031110.
- Скрибцов П. В., Долгополов А. В. Нейросетевая фильтрация и увеличение цифровых изображений // Труды 9-й Междунар. конф. «ЦифроваяОбработкаСигналовиПрименения (DSPA-07). М.: ИПУ. Март 28-30. 2007.
- Huang, G.-B. and Siew, C.-K., Extreme Learning Machine: RBF Network Case // Proceedings of the Eighth International Conference on Control, Automation, Robotics and Vision (ICARCV-2004). Dec 6-9, Kunming, China.
- Huang, G.-B., Zhu, Q.-Y. and Siew, C.-K., Real-Time Learning Capability of Neural Networks // IEEE Transactions on Neural Networks. 2006. V. 17. № 4. P. 863-878. (Technical Report ICIS/45/2003).
- Huang, G.-B., Zhu, Q.-Y. and Siew, C.-K., Extreme Learning Machine: Theory and Applications // Neurocomputing. 2006. V. 70. P. 489-501. (Technical ReportICIS/03/2004).
- Huang, G.-B., Wang, D. H., and Lan, Y.,Extreme Learning Machines: A Survey // International Journal of Machine Leaning and Cybernetics. 2011. V. 2. № 2. P. 107-122.
- Rajesh, R., Siva Prakash, J., Extreme Learning Machines - A Review and State-of-the-art // International journal of wisdom based computing. 2011. V. 1(1).
- Xiaoliang Tang, Min Han, Partial Lanczos extreme learning machine for single-output regression problems // Neurocomputing. 2009. V. 72. P. 3066-3076.
- Swingler, K., Applying Neural Networks. ApracticalGuide: пер. Ю. П. Маслобоева/ http://matlab.exponenta.ru/neuralnetwork/book4/index.php.
- Воронцов К. В. Лекции по алгоритмам восстановления регрессии: http://www.ccas.ru/voron/download/Regression.pdf.