350 rub
Journal Neurocomputers №9 for 2012 г.
Article in number:
Application of neural network techniques for solving inverse problems of hydrodynamics of rivers
Authors:
P.V. Skribtsov, P.A. Kazantsev, M.A. Chervonenkis
Abstract:
In this paper we consider an approach to combine methods for solving inverse problems of hydrodynamics of rivers and neural network techniques. The result of the research is a hybrid neural network method for solving the restoration of geometric and hydraulic characteristics of river channels. Developed neural network setting goals and learning algorithms of the neural networks. The resulting neural network approximation of the characteristics of the river allows modeling the movement of water in rivers based on direct solution of the Saint-Venant equations.
Pages: 29-34
References
  1. Романов А. В. Обратные задачи математического моделирования неустановившегося движения воды в реках. М.: Научный мир. 2008.
  2. Грушевский М. С. Неустановившееся движение воды в реках и каналах. Л.: Гидрометеоиздат. 1982.
  3. Hsu, K., Sorooshian, S., Gupta, H. V., Gao, X., and Imam, B., Hydrologic Modelling and Analysis Using A Self-Organizing Linear Output Network. Proceedings of International Environmental Modelling and Software Society (iEMSs 2002),  24-27 June 2002. Lugano. Switzerland. V. 2. P. 172.
  4. Toth, E. and Brath, A., Proceedings of International Environmental Modelling and Software Society (iEMSs 2002).  24-27 June 2002 Lugano. Switzerland. V. 2. P. 166.
  5. Werbos, P. J., Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis. Harvard University. 1974.
  6. Rumelhart, D. E.,Hinton, G. E., Williams, Ronald J. (8 October). Learning representations by back-propagating errors. // Nature. 1986. 323 (6088). Р. 533-536.
  7. Snyman, J. A., Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Springer Publishing. 2005.
  8. Kenneth Levenberg, A Method for the Solution of Certain Non-Linear Problems in Least Squares. // The Quarterly of Applied Mathematics 2: 1944. Р. 164-168.
  9. Donald Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters // SIAM Journal on Applied Mathematics. 1963. 11(2). Р. 431-441.
  10. Gill, Ph. E. and Murray, W., Algorithms for the solution of the nonlinear least-squares problem. // SIAM Journal on Numerical Analysis 15 (5). 1978. Р. 977-992.