350 rub
Journal Neurocomputers №9 for 2012 г.
Article in number:
Heterogeneuus NARX neural networks: application for failure identification
Authors:
D.S. Kozlov, Yu.V. Tyumentsev
Abstract:
In this paper basic steps of failure identification procedure are considered as an appropriate combination of an observation task for an aircraft simulation model together with a classification task for a failure event. The tasks are performed using various types of heterogeneous NARX networks. A complete nonlinear model of a fighter aircraft is =considered as an object of diagnosis. The failures under consideration can be divided into two groups: aircraft actuator failures and sensor failures. All neural network models are derived from a heterogeneous nonlinear autoregressive network with exogeneous inputs. The main steps of the identification procedure are failure detection and failure isolation. The failure detection can be interpreted as a realization of an observation task for the plant model. NARX network with series-parallel architecture was chosen for the plant approximation. This model is applied to implement failure detection for both types of the failures. A modified version of Levenberg-Marquardt algorithm is used for the neural network training. The algorithm takes into account additional parameters of the neuron activation function. The classification task tadel advantage of the analytical redundancy existing in the system. NARX networks with parallel architecture were chosen. A modified version of Forward Perturbation algorithm is used for the neural network training. Sensor failure isolation is carried out by means of virtual sensors i. e. neural network models which predict angular rates cross-correlation functions. The implementation of the failure identification procedure was performed using MATLAB Neural Network Toolbox 6.0. The results of simulationfor sensor and actuator failures with regard to a fighter aircraft are presented to demonstrate efficeitncy of the proposed approach.
Pages: 13-22
References
  1. Li, H., Monti, A., Diagnosis of sensor failure detection and information rebuilding using polynomial chaos theory // International instrumentation and measurement technology conference. 2009.
  2. Napolitano, M.R., a.o., Kalman filters and neural-network schemes for sensor validation in flight control systems// IEEE Transactions on Control Systems Technology. 1998. V. 6. № 5. P. 596-611.
  3. Del Gobbo, D., a.o., Experimental application of extended Kalman filtering for sensor validation // IEEE Transactions on Control Systems Technology. 2001. V. 9. № 2. P. 376-380.
  4. Napolitano, M. R., a.o.,Sensor failure detection, identification and accommodation using on-line learning architectures // AIAA Guidance, Navigation and Control Conference. 1994. V. 2. P. 489-499.
  5. Campa, G., a.o., Neural networks-based sensor validation for the flight control system of a B777 research model // Proceedings of the American Control Conference. 2002. V. 1. P. 412-417.
  6. Wan, S., a.o. On-line learning RBF neural networks for sensor validation // AIAA Guidance, Navigation, and Control Conference. 2002.
  7. Fravolini,M. L., a.o., Comparison of different growing radial basis functions algorithms for control systems applications // Proceedings of the American Control Conference. 2002. V. 2. P. 957-962.
  8. Жернаков С. В., Кобылев С. В. Контроль и диагностика комплексных отказов САУ ГТД с использованием рекуррентных нейронных сетей // Нейрокомпьютеры: разработка, применение. 2011. № 10. С. 28-45.
  9. Кондратьев А. И., Тюменцев Ю. В. Нейросетевое адаптивное отказоустойчивое управление движением маневренного самолета // Нейроинформатика-2010. XII Всероссийскаянаучно-техн. конф. Сб. науч.трудов. Ч. 2. М.: МИФИ. 2010.
  10. Sonneveldt, L., Nonlinear F-16 fighter mode // Matlab Central - An open exchange for the MATLAB and Simulink user community.
  11. Patton, R., Frank, P., Clark, R., Fault diagnostics in dynamic systems: Theory and applications. Prentice Hall. 1989.
  12. Demuth, H., Beale, M., Hagan, M., Neural network toolbox 6: User's guide. The MathWorks. 2009.
  13. Кучерявый А. А.Бортовые информационные системы: Курс лекций. 2-е изд. Ульяновск: УлГТУ. 2004.
  14. Jesus, O., Hagan, M., Back propagation algorithms for a broad class of dynamic networks // IEEE Transactions of neural networks. 2007. V. 18. № 1. P. 14-27.
  15. Perhinschi,M. R., a.o., Modeling and simulation of failures for primary control surfaces //16. AIAAModeling and Simulation Conference. 2002.
  16. Proakis, J. G., Manolakis, D. G.,Digital signal processing: Principles, algorithms, and applications. 3rd Ed. Prentice-Hall Inc. 1996.