350 rub
Journal Neurocomputers №6 for 2012 г.
Article in number:
The comparison analysis of neural architectures and learning algorithms for electrical energy losses forecasting
Keywords:
neural networks
electric power industry
electrical energy losses
mathematical modeling
Multi-Layer Perceptron
Fahlman Cascade Correlation Network
Authors:
Y.V. Koltsov, E.V. Boboshko
Abstract:
This article is devoted to the comparison analysis of several neural architectures in order to expose the most efficient one towards the task of 0.4-20 kV power distribution networks electrical losses calculation and forecasting. The following artificial neural network architectures were chosen as being the most suitable for the purposes of regression: Multi-Layer Perceptron, Linear Network, Radial Basis Function Network, General Regression Neural Network, Fahlman Cascade Correlation Network.
For training set construction, a data acquired from the parameters of electrical network working regimes modeling, was used. Three populations were corresponding to three different electrical schemes and different levels of regime information availability. In order to increase the quality of neural network training, a «cross-checking» method was used, which means the division of the source training set into several subsets. The least Square Mean Error over the testing subset of the training set was employed as a network-s efficiency criterium.
As a result of the research, it was found that the most efficient neural architectures are Multi-layer Perceptron and Fahlman Cascade Correlation Network. It was also shown, that Perceptron training method which allows getting the least error value is a conjunction of Backpropagation and Adjacent Gradients methods.
Pages: 55-61
References
- Железко Ю.С. Потери электроэнергии. Реактивная мощность. Качество электроэнергии: Руководство для практических расчетов. М.: ЭНАС. 2009.
- Кольцов Ю.В., Бобошко Е.В. Программная реализация нейросетевого подхода к расчету и прогнозированию потерь электроэнергии // Вестник компьютерных и информационных технологий. 2012. № 2.
- Электронный учебник StatSoft. Многослойный персептрон [Электронный ресурс] URL: http://www.statsoft.ru/home/portal/applications/neuralnetworksadvisor/adv-new/MultilayerPerceptrons.htm. (дата обращения: 28.02.2012)
- Нейронные сети. STATISTICANeuralNetworks: Методология и технологии современного анализа данных / под ред. В.П. Боровикова. Изд. 2-е, перераб. и доп. М.: Горячая линия - Телеком. 2008.
- Fahlman S.E., Lebiere С. The cascade-correlation learning architecture // Advances in NIPS2. 1990. P.524-532.