350 rub
Journal Neurocomputers №5 for 2012 г.
Article in number:
Implementation of FIR filters in the residue number system
Authors:
N.I. Chervyakov, P.A. Lyakhov
Abstract:
Digital filtering is one of the most important parts of modern digital signal processing. One of the most effective ways of filtering is to use finite impulse response filters, since such filters are much easier to designing and study than the recursive filter (infinite impulse response filters). The authors propose a method of constructing finite impulse response filters in the residue number system, which is an alternative to the traditional positional number system. Application of the residue number system will increase the speed of information processing in applications, the main computational load of the which accounts for the calculation of sums and products. There are two main advantages of modular arithmetic: 1. Arithmetic operations of addition, subtraction and multiplication are performed without division, in contrast to the positional representation of numbers. 2. For each of the values of the moduli residue number system, arithmetic operations are performed with a pair of corresponding residues in parallel. This article describes a 31-th order digital filter and shows a method of designing a filter in residue number system using the software environment MATLAB®. The use of neural network technology to realize filters of this type in practice is proposed. It is shown that the most effective means of neural network realization of devices operating in residue number system, is the use of finite ring neural networks.
Pages: 16-25
References
  1. Червяков Н.И., Сахнюк П.А., Шапошников А.В., Макоха А.Н. Нейрокомпьютеры в остаточных классах / под ред. А.И. Галушкина.  М.: Радиотехника. 2003.
  2. Omondi A., Premkumar B. Residue Number Systems: Theory and Implementation. Imperial College Press 2007.
  3. Stamenković N. Digital FIR Filter Architecture Based on the ResidueNumber System // FACTA UNIVERSITATIS (NIŠ). Ser.: Elec. Energ. April 2009. V. 22. №1. Р. 125-140.
  4. Wang Y., Aboulhamid M., Shen H. Adder based residue to binary numbers converters // IEEE Trans. Signal Processing.2002. V. 50. № 7. Р. 1772-1779.
  5. Gallaher D., Petry F.E., Sirnivasan P. The digit parallel method for fast RNS to weighted number system conversion for specify moduli // IEEE Trans. on Circuits and System II: Analog and Digital Signal Processing. Jan. 1997. V. 44. № 1. Р. 53-57.
  6. Tomczak T. Fast sign detection for rns  // IEEE Trans. on Circuitsand Systems-I: Regular papers. July 2008. V. 55. № 6. Р. 1502-1511.
  7. Червяков Н.И., Сахнюк П.А., Шапошников А.В., Ряднов С.А. Модулярные параллельные вычислительные структуры нейропроцессорных систем / под ред. Н.И. Червякова. М.: ФИЗМАТЛИТ. 2003.
  8. Червяков Н.И.Реализация высокоэффективной модулярной цифровой обработки сигналов на основе программируемых логических интегральных схем // Нейрокомпьютеры: разработка, применение. 2006. № 10. С. 24-36.
  9. Стемпковский А.Л., Корнилов А.И., Семенов М.Ю. Особенности реализации устройств цифровой обработки сигналов в интегральном исполнении с применением модулярной арифметики // Информационные технологии. 2004. № 2. С. 2-9.
  10. Ingle V.K., Proakis J.K. Digital Signal Procesing Using MATLAB® ser. BookWare Companion Series. New York, Madrid: Brooks/Cole Publishing Company. 1999.
  11. Галушкин А.И. Теория нейронных сетей. М.: ИПРЖР. 2000.