350 rub
Journal Neurocomputers №4 for 2012 г.
Article in number:
The structure of dynamical neural network for arma-model order estimation
Authors:
T.Y. Shevgunov
Abstract:
This paper introduces the structure of dynamical series-parallel neural network for linear ARMA model estimation based on time domain measured input and output signals of the system. The key feature of the offered structure is that it supports the simultaneous estimation procedures for the models of different orders whereas the choice of more appropriate model provides after the adaptation process. The model can be chosen based on two criteria - the relative root mean square error (RMSE) and information criterion MDL. The examples presented in the paper shows the numerical experiments for identification of the system with known transfer function driven by Gaussian random noise.
Pages: 24-30
References
  1. Марпл-мл. С. Л. Цифровой спектральный анализ и его приложения. М.: Мир. 1990.
  2. Ljung, L., System Identification. Theory for the User, 2nd ed / Prentice Hall, Upper Saddle River, 1999.
  3. Narendra, K.S., Parthasarathy, K., Identification and Control of Dynamical Systems Using Neural Networks // IEEE Transactions on Neural Networks. March 1990. V. 1. № 1.
  4. Хайкин С. Нейронные сети: полный курс. Изд. 2-е, испр.: Пер. с англ. М.: ООО «И.Д. «Вильямс», 2006.
  5. Candy, J. V., Model-Based Signal Processing // IEEE Press: John Wiley & Sons, 2006.
  6. Chon, K. H., Cohen, R. J., Linear and Nonlinear ARMA Model Parameter Estimation Using an Artificial Neural Network // IEEE Transactions on Biomedical Engineering, March 1997. V. 44. № 3.