350 rub
Journal Neurocomputers №9 for 2011 г.
Article in number:
Research in artificial neural networks the role of temporal parameters of inhibition in the local synchronization of activity in the cortex
Authors:
V. G. Marchenko, K. A. Saltykov
Abstract:
One manifestation of synchronization in the cerebral cortex is the slow oscillation (epileptiform discharges) the periodicity of 0.3-1 Hz. Low-frequency rhythmic activity was observed in the EEG in certain types of anesthesia, as well as in a state of natural sleep. Between slow oscillations during sleep and the discharges of "spike-wave" there is a certain kinship. Discharges "spike-wave" may gradually evolve from slow (< 1 Hz) oscillations during sleep. As shown by numerous studies on the isolated cortex, slow oscillations are developed not only in the intact brain, but also in isolation of the cortex from the thalamus. Thus, the slow epileptiform potentials generated under certain conditions, neural networks of the cortex via intracortical mechanisms. It is assumed that the most probable factor providing synchronization in cortical neuronal ensembles at the time of slow oscillations was long hyperpolarization. A very important factor for realizing our model is that the slow oscillations were characterized by rhythmic cycles of depolarization and the generation of action potentials (Up states) followed by membrane hyperpolarization and cessation of discharges (Down states). The aim of our study was to determine, using the simulation model of the neural network, which parameters of activity (excitation and inhibition) should have the neurons to provide periodic synchronous activity, similar to the epileptiform discharges in the real neural networks of the cortex. To create a model of neural networks used the program "Neuroimitator" version 4.2. The model was a matrix of 20-69 at the same level of formal neurons, not directly connected with each other, as well as neurons in chronically isolated area of the cortex after long-term experience. Input effects on the formal neuron model was adjusted so that their activity is the period between excitation and inhibition, and it responds to the real properties of pyramidal neurons in the cortex. For one group of neurons were established short duration of inhibition in the range 75 - 200 ms, and for the other - in the range of longer duration 300-750 ms. Each neuron of these parameters in the cycle of excitation - inhibition were their own, and they were repeated several times within 10 seconds of the model. The degree of synchronization in the model was determined as the percentage of simultaneously active neurons in a certain period of time. The contribution of each neuron in the field potential was adopted the same. It seems to us, the most significant result of our work is the fact that we have created artificial neural networks for a sufficiently long period of time managed to mimic epileptiform activity with characteristics that are similar to that observed in neurophysiological experiments. The most important parameter of the simulation model was the frequency of occurrence of the moments when both active (the synchronous) a significant portion of neurons. The model points with a maximum synchronization activity of neurons were observed with a periodicity 1.4 seconds, i.e. a frequency of 0.7 Hz. In our earlier data in experiments on rats with application of penicillin to the cortex epileptiform potentials occurred after 1.6 seconds, i.e. a frequency of 0.6 Hz. Thus, in our model studies have determined the parameters of the activity of neurons in which synchronous activity is generated at intervals as close to that observed in real neural networks. Neurons, which make the greatest contribution to the synchronous activity had a duration inhibitory pause in the range from 100 to 150 ms and 300 ms. As follows from experimental data GABAB receptors are associated with a slow hyperpolarization, in contrast to fast GABAA. In the early phase of the burst response develops GABAA component with a duration of hyperpolarization in an average of 50 ms. While GABAB - develops more slowly and was observed in the late phase response with a peak of activity after 200 ms. For network operation mode, when the number of simultaneously active neurons at approximately twice the equivalent noise (i.e. number of neurons with respect to the non-marked rhythm), you must have a network of at least 75% of the neurons with the duration of inhibitory pause of 100 to 150 ms and 300 ms. Synchronization of neural activity in local neuronal networks that were studied in this paper was produced by a certain time the impulsed activity of neurons in the complete absence of connections between them. Spike activity of neurons was, in turn, was structured through the inhibitory time windows of different durations. Based on the results obtained on the model, we can assume that the synchronization of epileptiform discharges in local networks of the cortex is provided by inhibition of inhibitory pause lasting from 100 to 150 ms and 300 ms, associated with GABAB receptors. This assumption is supported by the data in the literature on termination absence epilepsy GABAB antagonists in animals. The activity of other receptors, as GABAA, and GABAB with other durations of hyperpolarization, in this case, for various reasons, poorly expressed.
Pages: 28-41
References
  1. Steriade, M., Nuñez, A., Amzica, F., A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components // J. Neurosci. 1993. V. 13(8). P. 3252-3265.
  2. Avramescu, S., Timofeev, I., Synaptic strength modulation after cortical trauma: a role in epileptogenesis // J. Neurosci. 2008. V. 28(27). P. 6760-6772.
  3. Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J., Steriade, M., Origin of slow cortical oscillations in deafferented cortical slabs // Cereb. Cortex. 2000. V. 10(12). P. 1185-1199.
  4. Sanchez-Vives, M. V., McCormick, D. A., Cellular and network mechanisms of rhythmic recurrent activity in neocortex // Nat. Neurosci. 2000. V. 3(10). P. 1027-1034.
  5. Tateno, T., Robinson, H. P., Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex // Biophys. J. 2007. V. 92(2). P. 683-695.
  6. Kasanetz, F., Riquelme, L. A., O-Donnell, P., Murer, M. G., Turning off cortical ensembles stops striatal Up states and elicits phase perturbations in cortical and striatal slow oscillations in rat in vivo // J. Physiol. 2006. V. 577(1). P. 97-113.
  7. Haider, B., Duque, A., Hasenstaub, A. R., McCormick, D. A., Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition // J. Neurosci. 2006. V. 26(17). P. 4535-4545.
  8. Steriade, M., Contreras, D., Amzica, F., Synchronized sleep oscillations and their paroxysmal developments // Trends Neurosci. 1994. V. 17(5). P. 199-208.
  9. Amzica, F., Neckelmann, D., Membrane capacitance of cortical neurons and glia during sleep oscillations and spike-wave seizures // J. Neurophysiol. 1999. V. 82(5). P. 2731-2746.
  10. Timofeev, I., Grenier, F., Steriade, M., Contribution of intrinsic neuronal factors in the generation of cortically driven electrographic seizures // J. Neurophysiol. 2004. V. 92(2). P. 1133-1143.
  11. Марченко В. Г., Пасикова Н. В., Косицын Н. С.Внутрикорковая синхронизация эпилептичских разрядов на разных стадиях ультраструктурных перестроек в полностью нейро­нально-изолированном участке неокортекса крыс // Журнал высшей нервной деятельности. 2003. Т. 53. № 2. С. 215-221.
  12. Amzica, F., Steriade, M., Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation // J. Neurosci.1995. V. 15(6). P. 4658-4677.
  13. Amzica, F., Steriade, M., Short- and long-range neuronal synchronization of the slow (< 1 Hz) cortical oscillation // J. Neurophysiol. 1995. V. 73(1). P. 20-38.
  14. Polack, P. O., Guillemain, I., Hu, E., Deransart, C., Depaulis, A., Charpier, S. Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures // J. Neurosci.2007. V. 27(24). P. 6590-6709.
  15. Contreras, D., Steriade, M., Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships // J. Neurosci. 1995. V. 15(1 Pt 2). P. 604-622.
  16. Livanov, M. N., Shulgina, G. I.,Neurophysiologic mechanisms of internal inhibition // Pavlov J. Biol. Sci. 1983. V. 18 (1). P. 6-12.
  17. Шульгина Г. И. Активационный и тормозный типы синхронизации нейронов головного мозга. Генез и функциональное значение // Журнал высшей нервной деятельности. 2007. Т. 57. № 5. С. 533-540.
  18. Steriade, M., Cellular Substrates of Brain Rhythms: Electroencephalography, 5th Edition. Editors: Niedermeyer, Ernst; da Silva, Fernando Lopes. 2005. Lippincott Williams & Wilkins.
  19. Destexhe, A., Sejnowski, T. J. Interactions between membrane conductances underlying thalamocortical slow- wave oscillations // Physiol. Rev. 2003. V. 83(4). P. 1401-53.
  20. Traub, R. D, Miles, R., Wong, R. K., Models of synchronized hippocampal bursts in the presence of inhibition. I. Single population events // J. Neurophysiol. 1987. V. 58(4). P. 739-751.
  21. Bush, P. C.,Prince, D. A.,Miller, K. D., Increased pyramidal excitability and NMDA conductance can explain posttraumatic epileptogenesis without disinhibition: a model // J. Neurophysiol. 1999. V. 82(4). P. 1748-1758.
  22. Литвинов Е. Г. Пакет программ «Нейроимитатор» для имитационного моделирования ней ронных сетей биологических объектов // Нейрокомпьютеры. 2002. № 1-2. С. 21-35.
  23. Пасикова Н. В., Марченко В. Г., Косицын Н. С.Структурные основы процессов внутрикорковой синхронизации эпилептических потенциалов в сенсомоторной области неокортекса крыс // Физиологический журнал. 2000. Т. 86. № 5. С. 532-540.
  24. Smith, B. N., Dudek, F. E., Network interactions mediated by new excitatory connections between CA1 pyramidal cells in rats with kainate-induced epilepsy // J. Neurophysiol. 2002. V. 87(3). P. 1655-1658.
  25. Марченко В. Г., Салтыков К. А., Механизмы синхронизации в локальных нейронных сетях неокортекса. Модельные и экспериментальные исследования // Журнал высшей нервной деятельности. 2010. Т. 60. № 1. С. 80-89.
  26. Yang, L., Benardo, L. S, Valsamis H., Ling, D. S., Acute injury to superficial cortex leads to a decrease in synaptic inhibition and increase in excitation in neocortical layer V pyramidal cells // J. Neurophysiol. 2007. V. 97(1). P. 178-187.
  27. Destexhe, A., Spike-and-wave oscillations based on the properties of GABAB receptors // J. Neurosci. 1998. V. 18 (21). Р. 9099-9111.
  28. Марченко В. Г., Пасикова Н. В. Синхронизация электрических потенциалов в неокортексе крыс после изоляции участка коры в контралатеральном полушарии мозга // Журнал высшей нервной деятельности. 2008. Т. 58. № 1. С. 88-97.
  29. Bazhenov, М., Timofeev, I., Steriade, M., Sejnowski, T. J. Model of Thalamocortical Slow-Wave Sleep Oscillations and Transitions to Activated States // J. Neurosc. 2002. V. 22(19). P. 8691-8704.
  30. Schall, K. P.,Kerber, J., Dickson, C. T., Rhythmic constraints on hippocampal processing: state and phase-related fluctuations of synaptic excitability during theta and the slow oscillation // J. Neurophysiol.2008. V. 99(2). P. 888-899.
  31. Panuccio, G., Curia, G., Colosimo, A., Cruccu, G., Avoli, M., Epileptiform synchronization in the cingu late cortex // Epilepsia. 2009. V. 50(3). P. 521-536.
  32. Bowery, N. G., Smart, T. G., GABA and glycine as neurotransmitters: a brief history // Pharmacol. 2006. V. 147 Suppl 1: S109-119.
  33. Douglas, R. J., Martin, K. A., A functional microcircuit for cat visual cortex // J. Physiol. 1991. V. 440. P. 735-769.
  34. Metherate, R., Ashe, J. H., Facilitation of an NMDA receptor-mediated EPSP by paired-pulse stimulation in rat neocortex via depression of GABAergic IPSPs // J. Physiol. 1994. V. 481 (Pt. 2). P. 331-348.
  35. Otis, T. S., De Koninck, Y., Mody, I., Characterization of synaptically elicited GABAB responses using patch-clamp recordings in rat hippocampal slices // J. Physiol.1993. V. 463. P. 391-407.
  36. Nicoll, R. A., Malenka, R. C., Kauer, J. A., Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. // Physiol. Rev. 1990. V. 70(2). P. 513-565.
  37. Sceniak, M. P., Maciver, M. B., Slow GABA(A) mediated synaptic transmission in rat visual cortex // BMC Neurosci. 2008. V. 9. P. 8.
  38. Kapur, A., Pearce, R. A., Lytton, W. W., Haberly, L. B., GABAA-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells // J. Neurophysiol. 1997. V. 78(5). P. 2531-2545.
  39. Prenosil, G. A., Schneider Gasser, E. M.,Rudolph, U., Keist, R., Fritschy, J. M., Vogt, K. E., Specific subtypes of GABAA receptors mediate phasic and tonic forms of inhibition in hippocampal pyramidal neurons // J. Neurophysiol. 2006. V. 96(2). P. 846-857.
  40. Connors, B. W., Malenka, R. C., Silva, L. R., Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat // J. Physiol. 1988. V. 406. P. 443-468.
  41. von Krosigk, M., Bal, T., McCormick, D. A., Cellular mechanisms of a synchronized oscillation in the thalamus // Science. 1993. V. 261(5119). P. 361-364.
  42. Bowery, N. G., Enna, S. J., Gamma-aminobutyric acid (B) receptors: first of the functional metabotropic heterodimers // J. Pharmacol. Exp. Ther. 2000. V. 292(1). P. 2-7.
  43. Mann, E. O., Kohl, M. M., Paulsen, O., Distinct roles of GABA(A) and GABA(B) receptors in balancing and terminating persistent cortical activity // J. Neurosci. 2009. V. 29(23). P. 7513-7518.