350 rub
Journal Neurocomputers №12 for 2011 г.
Article in number:
Research in artificial neural networks the role of temporal parameters of inhibition in the local synchronization of activity in the cortex
Authors:
V. G. Marchenko, E. D. Bark, K. A. Saltykov
Abstract:
On a simulation model of local neural network we investigated the role of temporal parameters of inhibition of cortical neurons in the generation of slow epileptiform potentials. To create a neural network model we used the program "Neuroimitator" version 4. 2. The model imagines matrix of 20-69 at the same level of formal neurons that are not directly related to each other. Parameters of formal neurons corresponded to the parameters of real cortical neurons. In the model of local neural network at a sufficiently long period of time we were able to get the synchronous activity of neurons at the oscillation frequency 0.7 Hz. For network operation mode, when the number of simultaneously active neurons at twice the equivalent noise (the number of neurons with relatively unexpressed rhythm), you must have a network of at least 75% of the neurons with the above mentioned parameters. Exactly the same activity was observed in the real local neural networks of the cortex during blockade of GABAA receptors. It appeared to be essential that the neurons that make the greatest contribution to the generation of synchronous activity had the duration of the inhibitory pause in the range from 100 to 150 ms and 300 ms. Coincidence of activity at the output of the model and in animal experiments give grounds to assert that the processes simulated in the model are similar to the processes occurring in the brain. Based on the results obtained on the model, we can as-sume that the synchronization observed during epileptiform discharges in local networks of the cortex is due to inhibition mainly related to GABAB receptors.
Pages: 16-24
References
  1. Steriade, M., Nuñez, A., Amzica, F. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components // J. Neurosci. 1993. V. 13(8). P. 3252-3265.
  2. Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J., Steriade, M., Origin of slow cortical oscillations in deafferented cortical slabs // Cereb. Cortex. 2000. V. 10(12). P. 1185-1199.
  3. Tateno, T., Robinson, H. P., Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex // Biophys. J. 2007. V. 92(2). P. 683-695.
  4. Steriade, M., Contreras, D., Amzica, F., Synchronized sleep oscillations and their paroxysmal developments // Trends Neurosci. 1994. V. 17(5). P. 199-208.
  5. Timofeev, I., Grenier, F., Steriade, M., Contribution of intrinsic neuronal factors in the generation of cortically driven electrographic seizures // J. Neurophysiol. 2004. V. 92(2). P. 1133-1143.
  6. Марченко В. Г., Пасикова Н. В., Косицын Н. С. Внутрикорковая синхронизация эпилептичских разрядов на разных стадиях ультраструктурных перестроек в полностью нейронально-изолированном участке неокортекса крыс // Журнал высшей нервной деятельности. 2003. Т. 53. № 2. С. 215-221.
  7. Amzica, F., Steriade, M., Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation // J. Neurosci. 1995. V. 15(6). P. 4658-4677.
  8. Polack, P. O., Guillemain, I., Hu, E., Deransart, C., Depaulis, A., Charpier, S. Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures // J. Neurosci.2007. V. 27(24). P. 6590-6709.
  9. Contreras, D., Steriade, M., Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships // J. Neurosci. 1995. V. 15(1 Pt 2). P. 604-622.
  10. Destexhe, A., Sejnowski, T. J. Interactions between membrane conductances underlying thalamocortical slow- wave oscillations // Physiol. Rev. 2003. V. 83(4). P. 1401-1453.
  11. Литвинов Е. Г. Пакет программ «Нейроимитатор» для имитационного моделирования нейронных сетей биологических объектов // Нейрокомпьютеры. 2002. № 1-2. С. 21-35.
  12. Smith, B. N., Dudek, F. E., Network interactions mediated by new excitatory connections between CA1 pyramidal cells in rats with kainate-induced epilepsy // J. Neurophysiol. 2002. V. 87(3). P. 1655-1658.
  13. Марченко В. Г., Салтыков К. А. Механизмы синхронизации в локальных нейронных сетях неокортекса. Модельные и экспериментальные исследования // Журнал высшей нервной деятельности. 2010. Т. 60. № 1. С. 80-89.
  14. Destexhe, A., Spike-and-wave oscillations based on the properties of GABAB receptors // J. Neurosci. 1998. V. 18 (21). Р. 9099-9111.
  15. Bowery, N. G., Smart, T. G., GABA and glycine as neurotransmitters: a brief history // Pharmacol. 2006. V. 147 Suppl 1. Р.109-119.
  16. Metherate, R., Ashe, J. H., Facilitation of an NMDA receptor-mediated EPSP by paired-pulse stimulation in rat neocortex via depression of GABAergic IPSPs //J. Physiol. 1994. V. 481 (Pt. 2). P. 331-348.
  17. Nicoll, R. A., Malenka, R. C., Kauer, J. A., Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system // Physiol. Rev. 1990. V. 70(2). P. 513-565.
  18. Kapur, A., Pearce, R. A., Lytton, W. W., Haberly, L. B., GABA A-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells // J. Neurophysiol. 1997. V. 78(5). P. 2531-2545.
  19. von Krosigk, M., Bal, T., McCormick, D. A., Cellular mechanisms of a synchronized oscillation in the thalamus // Science. 1993. V. 261(5119). P. 361-364.
  20. Mann, E. O., Kohl, M. M., Paulsen, O., Distinct roles of GABA(A) and GABA(B) receptors in balancing and terminating persistent cortical activity // J. Neurosci. 2009. V. 29(23). P. 7513-7518.