350 rub
Journal Neurocomputers №11 for 2011 г.
Article in number:
Application of artificial neural networks in the tasks of fault detection in the behaviour of complex dynamic objects
Authors:
D. M. Klionskiy., A. K. Bolshev
Abstract:
The present paper is concerned with the issue of fault detection in the behavior of complex dynamic objects and systems. The authors offer a new approach to discovering these faults with the help of a one-class classification and neural networks. Furthermore, the neural network structure for the problems mentioned is suggested. The approach developed by the team of authors is tested in order to confirm its effectiveness for detecting computer network invasions and finding faults (abnormal values) in the functioning process of such complex dynamic objects as satellites and flying vehicles. These objects and their systems require an engineer (a controller) to constantly monitor signals obtained from different sensors (temperature, pressure, velocity, acceleration, and vibration sensors) and characterizing the state of an object - normal or abnormal. The number of signals can be very large and each one usually contains a great many samples sometimes numbering several million. Therefore the approach suggested and described in the following is aimed at analyzing objects that have very many signals subjected to the analysis with the aim of finding out whether or not there is a fault in an object. As regards mathematical tools we have used such branches of applied mathematics as neural network development and intellectual analysis of signals on the basis of Data Mining techniques (segmentation methods).
Pages: 32-45
References
  1. Han J. Kamber M. Data Mining: concepts and techniques. Morgan Kaufman Publishers. 2005.
  2. Ian H., Eibe F. Practical machine learning tools and techniques with Java implementations. Academic Press. San Diego, CA. USA. 2000.
  3. Xue Li, Osmar R., Zaïane Zhanhuai Li Advanced Data Mining and Applications Second International Conference. ADMA 2006 Xi-an, China. August 14-16. 2006 Proceedings. Springer. 2006.
  4. Bramer M.Principles of Data Mining Springer. 2007
  5. Барсегян А.А., Куприянов М.С., Степаненко В.В. Методы и модели анализа данных: OLAP и Data Mining. СПб.: БХВ-Петербург. 2004.
  6. Keogh E., Chu S., Hart D. & Pazzani M. An Online Algorithm for Segmenting Time Series // Proceedings of IEEE International Conference on Data Mining. 2001. Р. 289-296.
  7. Dobigeon N., Tourneret J., Davy M. Joint Segmentation of Piecewise Constant Autoregressive Processes by Using a Hierarchical Model and a Bayesian Sampling Approach // IEEE transactions on signal processing. 2007. V. 55. № 4. Р.1251-1263.
  8. Halgamuge S., Wang L. Classification and Clustering for Knowledge Discovery. Springer. 2005.
  9. Michie D., Spiegelhalter D.J., Taylor C. Machine Learning, Neural and Statistical Classification // Journal of the American Statistical Association. 1994. 91. № 433. Р.436-437.
  10. Мандель И.Д. Кластерный анализ. М.: Финансы и статистика. 1988.
  11. Chengqi Z., Shichao Z. Association rule mining: models and algorithms. Springer. 2002.
  12. Agrawal R., Srikant R. Fast algorithms for mining association rules in large databases // Proc. Int. Conf. on Very Large Databases, Chile, 1994. San Francisco: Morgan Kaufmann Publishers. 1994. Р. 487-499.
  13. Hoppner F. Knowledge discovery from sequential data. PhD Dissertation. 2003.
  14. Richard J. Povinelli. B.A., B.S. M.S. Time Series Data Mining: Identifying temporal Patterns for Characterization and Prediction of Time Series Events. Milwaukee. Wsconsin. December 1999.
  15. Назаров А.В., Козырев Г.И., Шитов И.В. и др. Современная телеметрия в теории и на практике. СПб.: Наука и техника. 2007.
  16. Зверев Р.И., Шитов И.В. Основы радиотелеметрии. Учеб. пособие. Ч. I. Л.: МО СССР. 1978.
  17. Белицкий В. И., Зверев В.И., Морозов В.М. Телеметрия. Л.: МО СССР. 1984.
  18. Wilson D.R., Martinez T.R. The Need for Small Learning Rates on Large Problems. Utah, Brigham Young University. 2001.
  19. Большев А.К. Яновский В.В. Применение нейронных сетей для обнаружения вторжений в компьютерные сети // Вестник Санкт-Петербургского университета. Сер. 10. Прикладная математика информатика процессы управления. 2009. Вып. 4. С. 38-44. СПб. 2009.
  20. Большев А.К. Лисс А.Р. Прототип эвристической системы обнаружения вторжений в компьютерные сети на основе метода главных компонент // Сборник Политехнического университета. СПб.: Изд-во Политехнического университета. 2010. С. 200-205.
  21. Larry M.Manevitz, Malik Yousef. Document Classification on Neural Networks Using Only Positive Examples. University of Haifa. Haifa. 2005.