350 rub
Journal Neurocomputers №6 for 2010 г.
Article in number:
Information system of the control dynamics of the vessel in conditions periodic changes of stability
Authors:
Hain Tun
Abstract:
Functioning of intellectual systems (IS) a safety of navigation is connected with the continuous control of behaviour of a vessel over a various level of external indignations [1] ? [15]. Alongside with situations which became typical at studying dynamics of a vessel on excitement, there is one more situation connected with continuous deterioration of initial stability. The effect of decrease in stability is to the greatest degree shown at courts with the S-shaped diagram of stability at movement on passing excitement. Presence of such diagram at influence of large packages of irregular waves causes sharp deterioration initial metacentric heights that leads to crankness of a vessel. The phenomenon of crankness is often observed in practice of operation. Cases of the heavy failures connected with sharp deterioration of stability on excitement are known. In experiments with model of cargo steam-ship on irregular excitement the sharp deterioration of stability led crankness of a vessel during passage of top of a wave through it middle has been established. It promoted occurrence of onboard rolling of the big amplitude (up to 30 degris and more), much resonant amplitude exceeding size (nearby 23 degris) at position of a vessel by a log to excitement. On the basis of carried out research it is possible to draw the basic conclusions defining features of dynamics of a vessel in conditions periodically changeable initial metacentric of height. At movement on passing excitement of courts from S-shaped chart stability at the certain values initial metacentric heights the phenomenon of crankness leading occurrence of an extreme situation (an opportunity of overturning owing to displacement of a cargo, etc. factors) is marked. Occurrence and development of an extreme situation is connected with intensive external indignations from packages of large waves in structure of irregular excitement and are defined by features of dynamics of interaction, geometrical and hydrodynamical characteristics of a vessel. Depending on structure run into excitements are possible various modes of oscillatory movement of a vessel on excitement. The first mode represents the three-stable system formed during periodic decrease metacentric of height. The second mode - bistability system, at which vessel tilts on right, or on the left board. The analysis of probability of overturning is carried out by a method functional actions. The lead analysis of data of modelling has allowed to formulate criterium the parities describing occurrence of the considered extreme situation. These data used as the control of dynamics of a vessel over excitement by means of onboard IS, functioning on the basis of the given dynamic measurements, mathematical models and the structured know-ledge base.
Pages: 31-39
References
  1. Аксютин Л. Р., Благовещенский С. Н. Аварии судов от потери остойчивости. Л.: Судостроение. 1975.
  2. Андронов А. А., Витт С., Хайкин С. Э. Теория колебаний. М.: Наука. 1981.
  3. Бородай И. К., Нецветаев Ю. А. Мореходность судов. Л.: Судостроение. 1982.
  4. Бортовые интеллектуальные системы. Ч.2. Корабельные системы. М.: Радиотехника. 2006.
  5. Интеллектуальные системы в морских исследованиях и технологиях / под ред. Ю. И. Нечаева. СПб.: ГМТУ. 2001.
  6. Капица С. П., Курдюмов С. П., Малинецкий Г. Г. Синергетика и прогнозы будущего. М.: Наука. 1997.
  7. Лоскутов А. Ю., Михайлов А. С. Введение в синергетику. М.: Наука. 1990.
  8. Неймарк Ю. И., Ланда П. С.Стохастические и хаотические колебания. М.: Наука. 1987.
  9. Нечаев Ю. И. Остойчивость судов на попутном волнении. Л.: Судостроение. 1978.
  10. Нечаев Ю. И. Моделирование остойчивости на волнении. Современные тенденции. Л.: Судостроение. 1989.
  11. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука. 1968.
  12. Хаяси Т. Нелинейные колебания в физических системах. М.: Мир. 1968.
  13. Belenky, V. L. and Sevastyanov, N. B., Stability and safety of ships. Risk of capsizing. Second edition / Ed. R.Bhattacharyya, M.E. McCormic. The Society of Naval Architects and Marine Engineers (SNAME). USA. 2007.
  14. Nechaev, Yu. I. and Dubovik, S. A., Probability-asymptotic methods in ship dynamic problem // Proceedings of 15th international conference on hydrodynamics in ship design, safety and operation. Gdansk. Poland. 2003. P.187-199.
  15. Pauling, J., Kastner, S.,and Schaffran, S., Experimental studies of capsizing of intact ships in heavy seas // IMO. STAB 7. 1973.