350 rub
Journal Neurocomputers №6 for 2010 г.
Article in number:
Information-analytical block of control of ship dynamics at movement in conditions of the limited water area
Authors:
P. E. Burakovsky, Yu. I. Nechaev
Abstract:
Development of intellectual monitoring systems of durability of courts on the limited water area represents one of the important directions of increase of safety of navigation. Operating experience of sea courts in conditions of the limited water area, especially courts of small displacement, testifies that landing to a bank is one of the most widespread kinds of failures therefore there are damages of case designs, and at times and destruction of courts. Characteristic damages of case designs thus are destruction of bottom coverings, crumple a set of a double bottom, damage of malar Kiel, deformation of sheets of an external covering in the form of goffer, and also damage of rudders, rowing screws, and also displacement or damage of floorings of the second bottom together with the bases of mechanisms. In the latter case the vessel even after removal from a bank has no opportunity to move the course. In the present work the methodology of the control of dynamics of a vessel on the basis of technologies of an artificial intellect is offered. The functional module is built in onboard intellectual system of monitoring of safety of a vessel and carries out the continuous control and the forecast of dynamics of interaction of a vessel over an environment on the basis of the dynamic knowledge base. Increase of efficiency of the control is reached on the basis of principles of processing of the information in the multiprocessor computing environment with use standard, indistinct and neuronet models. The analysis of alternatives and decision-making are carried out on the basis of the concept of soft calculations in a mode of real time. Carried out research of features of construction of the monitoring system of dynamics of a vessel at movement on the limited water area allows to draw following conclusions: Synthesis of the functional module providing the continuous control of behaviour of a vessel at movement on limited water area is carried out. The dynamic knowledge base functioning on the basis of given measurements and methods of mathematical modelling is developed. Mathematical modelling an investigated situation is lead at a various level of external indignations which results are used at testing the functional module. Thus, on the basis of the developed intellectual technology the approach and methodology of monitoring of dynamics of the vessel is offered, allowing to increase efficiency of use of courts and floating means in complex conditions of operation.
Pages: 14-22
References
  1. Бортовые интеллектуальные системы. Ч. 2.Корабельные системы. М.: Радиотехника. 2006.
  2. Благовещенский С. Н. Качка корабля. Л.: Судпромгиз. 1954.
  3. Бураковский Е. П. Совершенствование нормирования параметров эксплуатационных дефектов корпусов судов. Калининград: КГТУ. 2005.
  4. Бураковский П. Е. Изгиб упруго-пластических балок, лежащих на основании с характеристиками прандтлевского типа с линейным упрочнением // Тр. научн. конфер. «Инновации в науке и образовании-2006». Ч. 2. С. 12 - 14.
  5. Воробьев Ю. Л. Гидродинамика судна в стесненном фарватере. Л.: Судостроение. 1992.
  6. Воробьев Ю. Л. Лабин А. И. Определение динамической просадки судов на мелководье // Тез. докл. Всесоюзной научн.-техн. конфер. «Крыловские чтения». Л.: Судостроение. 1980. С. 23 - 24.
  7. Дикович И. Л. Статика упруго-пластических балок судовых конструкций. Л.: Судостроение. 1967.
  8. Короткин А. И. Присоединенные массы судна: Справочник. Л., 1986.
  9. Нечаев Ю. И. Математическое моделирование в бортовых интеллектуальных системах реального времени // Тр. 5-й Всеросс. конфер. «Нейроинформатика-2003». М., 2003. Лекции по нейроинформатике. Ч. 2. С. 119 - 179.
  10. Нечаев Ю. И. Нейросетевое моделирование динамики сложного объекта // Сб. научн. тр. 9-й всероссийской научно-технической конференции «Нейроинформатика-2007». Ч. 1. МИФИ 2007. С. 57 - 63.
  11. Правила классификации и постройки морских судов // Российский Морской Регистр судоходства: T. 1. СПб., 1999.
  12. Сидоренко В.Ф. Кораблекрушение на море. Л.: ЛГУ. 1990.
  13. Справочник по теории корабля. Т. 1 / под ред. Я. И. Войткунского. Л.: Судостроение. 1985.
  14. Юдович А. Б. Предотвращение навигационных аварий морских судов. М.: Транспорт. 1988.
  15. Alexandrov, V. L., Matlakh, A. P., Nechaev, Yu. I., and Polyakov, V. I.,Intelligence system for ship dynamics monitoring in extreme situations // Proceedings of International conference on marine research and transportation ICMRT-05. Naples. Italy. 2005 P. 55 - 63.
  16. Alexandrov, V., Matlakh, A., Nechaev Yu., and Polyakov V.,Strength and vibration multimode control for ship, moving in the ice condition // Proceedings of the 10th International Symposium on Practical Design of ships and other floating structures. Houston. Texas. USA. October 1 - 5. 2007. V. 2, P. 1295 - 1302.
  17. Zadeh, L., Fuzzy logic, neural networks and soft computing // Соmmutation on the ASM-1994. V. 37. No. 3, Р.77 - 84.