350 rub
Journal Neurocomputers №2 for 2010 г.
Article in number:
Study of input jitter influence on interaural time difference sensitivity of EI neuron population
Authors:
V. A. Vasilkov, R. A. Tikidji-Hamburyan
Abstract:
In this paper, another biologically inspired neural mechanism underlying interraural time differences (ITDs) detection is examined. The study is based on the neural network model that simulates the activity of two symmetric populations of auditory binaural EI neurons under dichotic stimulation. To increase biological plausibility of modeling results neural network is comparable in size to the biological prototype and a single element of proposed network. The behavior of the network model in the presence of input jitter is considered, and the robustness of the proposed mechanism to such random travel time differences of ipsi- and contralateral spikes is shown. The results of the modeling also indicate stable ITD detection in case of random (normal) distribution of synaptic weight for both populations, and this fact provides computational evidence that suggested mechanism is applicable to biological neural population without precise tuning of synaptic weights.
Pages: 65-72
References
  1. Блауэрт Й. Пространственный слух: Пер. с нем. М.: Энергия. 1979. 224 с.
  2. Слуховая система / Под ред. Я.А. Альтмана. Л.: Наука. 1990. 620 с.
  3. Элементы теории биологических анализаторов / Под ред. Н.В. Позина. М.: Наука. 1978. 360 с.
  4. Gerstner W., Kistler W.M. Spiking Neuron Models. Single Neurons, Populations, Plasticity. CambridgeUniversityPress. 2002.
  5. Полевая С.А., Еремин Е.В. Компьютерные технологии для исследования структуры субъективного сенсорного пространства человека // Нижегородский медицинский журнал. 2003. Т.1. С.17-21.
  6. Yin T.C.T. Neural mechanisms of encoding binaural localization cues in the auditory brainstem. In Integrative Functions in the Mammalian Auditory Pathway. D. Oertel, A.N. Popper, R.R. Fay; Eds. Springer-Verlag, Springer Handbook of Auditory Research. 2002. P. 99-159.
  7. Jeffress L. A. A place theory of sound localization // J. Comp. Physiol. Psychol. 1948. V.41. P.35-39.
  8. Joris P.X., Smith P.H., Yin T. Coincidence Detection in the Auditory System: 50 Years after Jeffress // Neuron. 1998. V.21. P.1235-1238.
  9. McAlpine D. Creating a sense of auditory space // J. Physiol. 2005. V.566. P.21-28.
  10. McAlpine D., Grothe B. Sound localization and delay lines - Do mammals fit the model - // Trend. Neurosci. 2003. V.26. P.347-350.
  11. Bergeijk W.A. Physiology and Psychophysics of Binaural Hearing. // J. Int. Audiol. 1964. V. 3. P. 174-185.
  12. Васильков В.А., Тикиджи-Хамбурьян Р.А. Исследование возможных механизмов детектирования коротких временных задержек популяцией E-I нейронов // Нейрокомпьютеры: разработка и применение. 2008. № 5-6. C. 46-53.
  13. Тикиджи-Хамбурьян Р.А., Полевая С.А. Локализация источника звука искусственной нейронной сетью, основанной на модифицированных импульсных нейронах со следовой поляризацией. // Нейрокомпьютеры: разработка, применение. 2004. № 11. C. 41-45.
  14. Liu W., Suga N. Binaural and commissural organization of the primary auditory cortex of the mustached bat // J. Comp. Physiol. 1997. P.599-605.
  15. Dodla R., Rinzel J. Enhanced neuronal response induced by fast inhibition. // Phys. Rev. E. 2006. V. 73. № 1. 010903(R).
  16. Hodgkin A.L., Huxley A.F. A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. // J. Physiol. (Lond.). 1952. V. 117. P. 500-544.
  17. Carnevale N.T., Hines M.L. The NEURON Book. Cambridge, UK: Cambridge University Press. 2006.
  18. Carnevale N.T. and Hines M.L.The NEURON Simulation Environment. [Электронный ресурс]. URL: http://www.neuron.yale.edu/
  19. Тикиджи-Хамбурьян Р.А., Маркин С.Н. Универсальный пакет прикладных программ для имитационного биологически адекватного нейромоделирования // Сб. науч. тр. 9-й Всеросс. научн.-техн. конф. «Нейроинформатика-2007». 2007. Т. 3. С. 24-31.
  20. Izhikevich E.M. Simple Model of Spiking Neurons // IEEE Transactions on Neural Networks. 2003. V. 14. No. 6. P. 1569-1572.
  21. Compte A., Sanchez-Vives M.V., McCormick D.A., Wang X.-J. Cellular and Network Mechanisms of Slow Oscillatory Activity (<1 Hz) and Wave Propagations in a Cortical Network Model // J. Neurophysiol. 2003. P. 2707-2725.
  22. Vasilkov V.A., Ischenko I.A., Tikidji-Hamburyan R.A. A hierarchical neural model sensitive to interaural time differences. // Frontiers in Neuroinformatics. Conference Abstract: 2nd INCF Congress of Neuroinformatics. 2009.