350 rub
Journal Neurocomputers №2 for 2010 г.
Article in number:
Nonlinear simulation of rhythmic processes of bioelectrical activity in the cerebral cortex
Authors:
B.V. Bakharev, M.N. Zhadin
Abstract:
The interaction between excitatory and inhibitory populations of neocortical neurons, taking into account the well-known nervous cells properties (the absolute and relative refractory periods, the postsynaptic potential amplitude dependence of the membrane potential) is considered. Steady states and the stability region of oscillations of average membrane potential of excitatory neurons, as is well known be accountable for electroencephalogram, are studied upon varying average afferent input under the assumption that the cell threshold distribution is normal. It is shown that there is a parameter range in the stability region where an increase of the average discrete Gaussian white-noise of nonspecific afferent input enhances the oscillation frequency up to the domination of determined rhythm followed by its attenuation and spectral spreading upon further increase of the input. The human and animal-s electroencephalograms in different functional states were numerically simulated. The real form of a power spectrum of electroencephalogram is obtained. In the unsteady region, the existence of a limiting cycle and possibility of arising of pathological activity observed at abnormal brain functioning were shown with the help of the numerical nonlinear analysis.
Pages: 59-64
References
  1. Purpura D.P., Frigyest T.L., McMurtry I.J., Scarff T. Synaptic mechanism sinthalamic regulation of cerebellocortical projection activity // In: TheThalamus / eds D.P. Purpura, M.D. Yahr. New-York: Columbia University Press. 1966. P. 153-170.
  2. Жадин М.Н. Механизмы синхронизации потенциалов коры головного мозга. 2. Модель зависимых источников // Биофизика. 1969. Т. 14. В. 5. С. 897 - 902.
  3. Жадин М.Н. Биофизические механизмы формирования энцефалограммы. М.: Наука. 1984. 196 с.
  4. Сентаготаи Я., Арбиб М. Концептуальные модели нервной системы. М.: Мир. 1976. 198 с.
  5. Маунткасл В. Организующий принцип функции мозга: Элементарный модуль и распределенная система // В кн.: Д. Эдельман, В. Маунткасл. Разумныймозг. М.: Мир. 1981.С. 15 - 67.
  6. Wilson H.R., Cowan J.D. Excitatory and inhibitory interactions in localized population of model neurons // Biophys. J. 1972. V. 12. N. 1. P. 1 - 24.
  7. Uttley A.M. The probability of neural connections // Proc. Roy. Soc. ser. B. Biol. Sci. 1956. V. 142.P. 229 - 241.
  8. Sholl D.A. The organisation of the cerebral cortex. New York: John Wiley Inc. 1956. 125 p.
  9. СерковФ.Н. Корковоеторможение. Киев: Наук. думка. 1986. 247 с.
  10. Renaud L.P., Kelly J.S., Provini L. Synaptic inhibition in pyramidal tract neurons; membrane potential and conductance changes evoked by pyramidal tract and cortical surface stimulation // J. Neurophysiol. 1974. V. 37. N. 6. P. 1144-1155.
  11. Coombs J.S., Eccles J.C., Fatt P. Excitatory synaptic action in motoneurones // J. Physiol. (Lond.). 1955. V. 130.P. 374 - 395.
  12. Deisz R.A., Fortin G., Zieglgänsberger W. Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons // J. Neurophysiol. 1991. V. 65. N. 2. P. 371 - 382.
  13. Бахарев Б.В.Влияние нелинейной потенциалзависимости амплитуды возбуждающих постсинаптических потенциалов, вызываемых нейронами коры головного мозга, на ее ритмическую активность // Биофизика. 2008. Т. 53. № 5. С. 874-878.
  14. Бахарев Б.В. Колебательные процессы биоэлектрической активности коры головного мозга // Математическое моделирование. 2004. Т. 16. № 4. С. 55 - 66.
  15. Бахарев Б.В., Жадин М.Н.Влияние потенциалзависимости амплитуды постсинаптических потенциалов на ритмические процессы биоэлектрической активности коры головного мозга // Биофизика. 2004. Т. 49. № 4.С. 747 - 755.