350 rub
Journal Neurocomputers №2 for 2010 г.
Article in number:
Modern neurobiology discoveries and mathematical modeling result in new understanding of navigation behaviour neurodinamics
Keywords:
hippocamp
entorhinal cortex
navigation system
velocity signal
neural network
conceptual model
Authors:
V. D. Tsukerman, O. V. Karimova, S. V. Kulakov, А. А. Sazykin
Abstract:
The spatial behavior of higher organisms and their navigation capabilities are controlled by the distributed control system. The most important component of that system is the entorhinal-hippocampal brain system. Last discoveries of specializing cells («grid cells», «place cells», «head direction cells») in this system grow up the numerous of theoretical and experimental studies. The wide interest to biological navigation problems closely related with the application aims as well as with an attempts to solve basic cognitive tasks such as episodic memory, encoding and memorizing of navigation pathways and many others. The conceptual model and computer simulations results of trajectory integration of space moving in free-scalable nonlinear oscillator neural networks with even cyclic inhibition (ECI-networks) are discussed in this paper.
To estimate the phase shifting under input impact the ECI-networks contain two subsystems namely reference and information ones. The population of reference (nonencoding) oscillatory units has significant role in generation and stabilization of numerous time scales despite it don-t assist directly in the phase pattern encoding of input signals. In addition it serves to set up the basic theta rhythm. In these networks the relative phase of information units is determined and stabilized by the attractor dynamics that results in the formation of phase pattern of the encoded messages. Nonspecific input of network (common input for information units) mediately defines the linear velocity of spatial movement of the virtual object and particular inputs of information units define their angular velocity. Each layer (contour) of network information units has unique area of phase representations of high-frequency gamma burst in low-frequency theta-cycles i.e. it is shifted relatively to neighboring layers. External layer has the most high frequency and internal layers have the least ones because theta-frequency gradient is existed. The phase encoding of signals pattern with different temporal resolution from the maximal in external layer to the minimum in internal one is realized in ECI-network. Inside a single theta-cycle, the relative phase shift of information units reproduces ahead sequence of position on the trajectory of spatial movements, and the greater temporal shifts correspond to longer distances. The formation of a variety for steady-stated responses due to recurrent interactions in the network and shift mechanism that is guided by velocity inputs, arise the basis of the trajectory integration system. It was shown by computer modeling that network interactions architecture is one of the determining factors of inner (subjective) presentations of environment space. It determines dynamic formation of self-organized neural ensembles of different levels namely from phase cluster to oscillatory hyper-ensemble. Multifunctionality is the main characteristics of ensemble encoding of environment space because the same ensembles can encode (to present coherently) different events of environment space. It was experimentally shown that the high-precision frequency-phase mechanism in the frameworks of ensemble hypothesis can be used in navigation behavior.
Pages: 17-27
References
- McLelland D., Paulsen O.Neuronal oscillations and the rate-to-phase transform: mechanism, model and mutual information // J. Physiol.2009. V. 587.4.P. 769-785.
- Цукерман В.Д., Чешков Г.Н. Основы нелинейной динамики сенсорного восприятия. I. Фазовое кодирование в осцилляторных сетях с четным циклическим торможением // Нейрокомпьютеры: разработка и применение. 2002. № 7-8.C.65-72.
- Цукерман В.Д., Кулаков С.В. Биологические алгоритмы кодирования сенсорных событий // Нейрокомпьютеры: разработка и применение. 2004. № 11. С.15 - 25.
- Цукерман В.Д. Нелинейная динамика сенсорного восприятия, или Что и как кодирует мозг. Ростов-на-Дону: Изд-во Ростовского госуниверситета. 2005. 195 с.
- Цукерман В.Д. Математическая модель фазового кодирования в мозге // Математическая биология и биоинформатика. 2006. № 1. С. 97-107. http://www.matbio.org/downloads/Tsukerman2006(1_97).pdf
- Цукерман В.Д., Кулаков С.В., Каримова О.В. Пульсирующие коды событийных последовательностей // Математическая биология и биоинформатика. 2006. № 1.С. 108-122. http://www.matbio.org/downloads/Tsukerman2006(1_108).pdf
- O-Neill J., Senior T., Csicsvari J. Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior // Neuron. 2006. V. 49. P. 143-155.
- Diba K., Buzsaki G. Forward and reverse hippocampal place-cell sequences during ripples // Nat. Neurosci. 2007. V. 10. P. 1241-1242.
- O-Neill J., Senior T.J., Allen K., Huxter J.R., Csicsvari J. Reactivation of experience-dependent cell assembly patterns in the hippocampus // Nature Neuroscience. 2008.V. 11.P.209 - 215.
- Cheng S., Frank L.M. New experiences enhance coordinated neural activity in the hippocampus // Neuron. 2008. V. 57. P. 303 - 313.
- Lorincz A., Szirtes G. Here and now: How time segments may become events in the hippocampus // Neural Networks. 2009. V. 22 (5-6). P.738 - 747.
- McNaughton B.L., Battaglia F.P., Jensen O., Moser E.I., Moser M.-B.Path integration and the neural basis of the «cognitive map» // Nat. Rev. Neurosci. 2006. V. 7. P. 663 - 678.
- Grid cell mechanisms and function: Contributions of entorhinal persistent spiking and phase resetting.
- Hasselmo M.E. Grid cell mechanisms and function: Contributions of entorhinal persistent spiking and phase resetting // Hippocampus. 2008. V. 18(12). P. 1213 - 1229.
- Moser E.I., Moser M.-.B. A metric for space // Hippocampus. 2008.V. 18. P. 1142 - 1156.
- Moser E.I., Kropff E., Moser M.-.B.Place cells, grid cells, and the brain-s spatial representation system // Annu. Rev. Neurosci. 2008. V. 31. P. 69 - 89.
- Gaussier P, Banquet JP, Sargolini F, Giovannangeli C, Save E, Poucet B. A model of grid cells involving extra hippocampal path integration, and the hippocampal loop // J. Int. Neurosci. 2007. V. 6. P. 447 - 476.
- Kubie J.L., Fenton A.A.Heading-vector navigation based on head direction cells and path integration // Hippocampus. 2009. V. 19. P. 456-479.
- Taube J.S., Muller R.U., Ranck J.B.Jr. Head direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis // J. Neurosci. 1990. V. 10. P. 420-435.
- Zhang K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory // J. Neurosci. 1996. V. 16(6). P. 2112 - 2126.
- Mizumori S.J.Y., Williams J.D. Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats // J. Neurosci. 1993. V. 13. P. 4015 - 4028.
- Bernardet U., Bermudez S.B., Verschure P. A model for the neuronal substrate of dead reckoning and memory in arthropods: a comparative computational and behavioral study // Theory Biosci. 2008. V. 127. P.163 - 175.
- Bragin A., Jando G., Nadasdy Z., Hetke J., Wise K., Buzsirki G. Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat // J. Neurosci. 1995. V. 15. P. 47 - 60.
- Egorov A.V., Hamam B.N., Fransen E., Hasselmo M.E., Alonso A.A.Graded persistent activity in entorhinal cortex neurons. - Nature, 2002,420, pp.173-178.
- Fransen E., Tahvildari B., Egorov A.V., Hasselmo M.E., Alonso A.A.Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons // Neuron. 2006. V. 49. P. 735 - 746.
- Hasselmo M.E., Brandon M.P. Linking cellular mechanisms to behavior: entorhinal persistent spiking and membrane potential oscillations may underlie path integration, grid cell firing, and episodic memory // Neural Plasticity. 2008. M.
- Geisler C., Robbe D., Zugaro M., Sirota A., Buzsaki G. Hippocampal place cell assemblies are speed-controlled oscillators // PNAS USA. 2007. V. 104. P. 8149 - 8154.
- Hafting T., Fyhn M., Molden S., Moser M.-B., Moser E.I. Microstructure of a spatial map in the entorhinal cortex // Nature. 2005. V. 436. P.801 - 806.
- Fuhs M.C., Touretzky D.S. A spin glass model of path integration in rat medial entorhinal cortex // J. Neurosci. 2006. V. 26(16). P.4266 - 4276.
- Burak Y., Fiete I.R. Path integration in continuous attractor network models of grid cells // PLoS Comput. Biol. 2009. V. 5(2).