350 rub
Journal Neurocomputers №8 for 2009 г.
Article in number:
The risk analysis on the basis of fuzzy bayesian networks
Authors:
V. V. Borisov, A. Yu. Belozersky
Abstract:
Various aspects of the risk analysis of making decisions are considered on the basis of fuzzy Bayesian networks. The risk of the making decision is defined as probability (opportunity) of occurrence of one event at approach of other event.
Classification of methods of introduction of fuzziness in a Bayesian network is offered depending on character of the used information and features of decided tasks of the risk analysis:
complement of the Bayesian rule with membership functions of corresponding values of variables;
replacement of values of probabilities by fuzzy sets (terms of linguistic variables), and operations with crisp values - on operations S-and Т-norms with fuzzy sets;
replacement of values of probabilities by fuzzy numbers, and usual operations - on the expanded operations above indistinct numbers.
The fuzzy inference with use fuzzy Bayesian networks based on use of expanded arithmetic operations above fuzzy numbers is considered.
The technique of construction and use of fuzzy Bayesian networks for the risk analysis is submitted.
The contensive examples showing a technique of inference on the basis of fuzzy Bayesian networks are considered.
Results of the risk analysis of investment decisions with use of this approach are received.
Pages: 23-30
References
- Крюков С. В. Байесовы сети как инструмент моделирования неопределенности при принятии инвестиционных решений // Экономический вестник Ростовского государственного университета. 2002. Т. 5. № 1. С. 106-111.
- ГОСТ Р 51897-2002 Менеджмент риска. Термины и определения.
- ГОСТ Р 51898-2002 Аспекты безопасности. Правила включения в стандарты.
- Борисов В. В., Абраменкова И. В., Балабаев М. А., Бояринов Ю. Г. Мониторинг рисков на основе нечетких когнитивных моделей // Программные продукты и системы. 2007. Т. 78. № 2. С. 61-64.
- Pan H., Liu L. Fuzzy Bayesian networks - a general formalism for representation, inference and learning with hybrid Bayesian networks // IJPRAI. 2000. V. 14(7).Р. 941-962.
- Moraes R. M., Machado L. S. A fuzzy bayes evaluator for on-line training evaluation based on virtual reality // Prod. World Congress on Computer Science, Engineering and Technology Education. SaoPaulo. BRAZIL. 2006. Р. 399-403.
- Круглов В. В., Борисов В. В.Искусственные нейронные сети. Теория и практика. 2-е изд., стереотип. М.: Горячая линия - ТЕЛЕКОМ. 2002. 382 с.
- Аверкин А. Н., Костерев В. В.Триангулярные нормы в системах искусственного интеллекта // Известия Академии наук. Теорияисистемыуправления. 2000. №5. С. 106-109.
- Kwakernaak H. Fuzzy random variables: definitions and theorems // Information Sciences. 1978. № 15(1). Р. 1-29.
- Ren J., Wang J., Jenkinson I., Xu D. L., Yang J. B. An offshore risk analysis method based on fuzzy Bayesian networks // EPSRC report. 2005. Р. 251-257.
- Halliwell J., Keppens J., Shen Q. Linguistic Bayesian networks for reasoning with subjective probabilities in forensic statistics // Proc. of the 5th International Conference on AI and Law. 2003. Р. 42-50.
- Leon-Rojas J. M.,
Masero V., Morales M. On the fuzzy Bayesian inference of population
annoyance level caused by noise exposure // Symposium on Applied Computing,
Proceedings of the 2003 ACM symposium on Applied computing. 2003.
Р. 227-234.