350 rub
Journal №1 for 2017 г.
Article in number:
The analysis magnetization of carbon nanotubes
Authors:
P.A. Ivliev - Post-graduate Student, Department of Physics, Bauman Moscow State Technical University E-mail: ivliev-pavel@mail.ru
Abstract:
The results of theoretical studies of the magnetization of single-walled carbon nanotube metal type with regard to the electron-electron interaction in the approximation of a right circular cylinder are presented. The explicit form of the dependence of the magnetization on the temperature and the chiral index. The analysis of dependence showed that the increase in temperature of the object corresponds to the growth of the magnetization. This result can be explained by the increase in molecular circular currents with increasing electron temperature. The analysis of dependencies installed for the type of «armchair» nanotubes and like «zigzag». Nanotubes such as «chair» have greater largest magnetization than the tube of the «zigzag» of similar diameter. Thus, with increasing index m chiral magnetization tends to decline. In the course of this theoretical study found that the decline takes place more smoothly than the zigzag chair for structures. With increasing electron temperature study of nanostructures, there is the absolute value of the magnetization growth. However, the downward trend of the magnetization with increasing chiral index is maintained. The results are compared with the currently available concepts of magnetism of carbon nanostructures. It was found that the nanotubes chair and zigzag modifications have no magnetization in excess of the value of the chiral index values hundred units.
Pages: 8-13
References

 

  1. Iijima S. Helical Microtubules of Graphitic Carbon // Nature. 1991. V. 354. R. 56-58.
  2. Dunaevskijj S.M., Rozova M.N., Klenkova N.A. EHlektronnaja struktura grafitovykh nanotrubok // Fizika tverdogo tela. 1997. T. 39. № 6. S. 1118-1121.
  3. Ostrovskijj P.M. Provodimost uglerodnykh nanotrubok v prodolnom magnitnom pole // Pisma v ZHEHTF. 2000. T. 72. № 8. S. 600-604.
  4. Galkin N.G., Margulis V.A., SHorokhov A.V. EHlektrodinamicheskaja vospriimchivost kvantovojj nanotrubki v parallelnom magnitnom pole // Fizika tverdogo tela. 2002. T. 44. № 3. S. 466-467.
  5. Vedernikov A.I., CHaplik A.V. Kolebatelnye mody i ehlektronno-fononnoe vzaimodejjstvie v poluprovodnikovykh nanotrubkakh // Fizika i tekhnika poluprovodnikov. 2004. T. 38. № 11. S. 1358-1363.
  6. Novoselov K.S. Two-dimensional gas of massless Dirac fermions in grapheme // Nature. 2005. V. 438. R. 197-200.
  7. Grudzinskaja I.S., Kosakovskaja Z.JA., Ovchinnikov O.B., CHaban I.A. Optoakusticheskijj ehffekt v plotnykh slojakh orientirovannykh uglerodnykh nanotrubok: ispolzovanie ego dlja izmerenija koehfficienta pogloshhenija sveta i tolshhin plenok // Akusticheskijj zhurnal. 2006. T. 52. № 3. S. 330-334.
  8. Yang Z.P., Lijie C., Bur J.A., Lin S.Y., Ajayan P.M. Experimental observation of an extremely dark material made by a low-density nanotube array // Nano Letters. 2008. V. 8. № 2. R. 446-451.
  9. Eleckijj A.V. Transportnye svojjstva uglerodnykh nanotrubok // Uspekhi fizicheskikh nauk. 2009. T. 179. № 3. S. 225-242.
  10.  Zakharchenko A.A., Petrov B.K. Provodimost odnoslojjnykh uglerodnykh nanotrubok s metallicheskimi svojjstvami v priblizhenii svobodnykh ehlektronov // Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2009. T. 5. № 12. S. 37-42.
  11. Ivanchenko G.S., Lebedev N.G. Provodimost uglerodnykh nanotrubok, obuslovlennaja migraciejj protonov po ikh poverkhnosti // Fizika tverdogo tela. 2009. T. 51. № 11. S. 2281-2286.
  12. Shi H., Baac H.W., Guo L.J. Low density carbon nanotube forest as an index-matched and near perfect absorption coating // Applied Physics Letters. 2011. V. 99. № 21. R. 211103-211106.
  13. Sadykov N.R., Skorkin N.A. Vozdejjstvie nestacionarnogo ehlektricheskogo polja s razlichnym profilem perednego fronta na uglerodnye nanotrubki // Fizika i tekhnika poluprovodnikov. 2012. T. 46, № 8. S. 1043-1048.
  14. Danlee Y., Huynen I., Bailly C. Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes // Applied physics letters. 2012. V. 100. R. 213105-213109.
  15. Maine S., Koechlin C., Rennesson S., Jaeck J., Salort S., Chassagne B., Pardo F., Pelouard J., Haidar R. Complex optical index of single wall carbon nanotube films from the near-infrared to the terahertz spectral range // Applied optics. 2012. V. 51. № 15. pp. 3031-3035.
  16. Seid-Rzaeva S.M. Relaksacija ehnergii neravnovesnykh ehlektronov v nanotrubke, sformirovannojj svernutojj kvantovojj jamojj // Fizika i tekhnika poluprovodnikov. 2013. T. 47. № 6. S. 793-796.
  17. Erkovich O.S., Ivliev P.A. Raschet ehlektronnojj plotnosti uglerodnykh nanotrubok vo vneshnem ehlektromagnitnom pole // Nanomaterialy i nanostruktury - XXI vek. 2016. T. 7. № 1. S. 8-13.
  18. Qin L.C., Zhao X., Hirahara K., Miyamoto Y., Ando Y., Iijima S. The smallest carbon nanotube // Nature. 2000. V. 408. P. 50.
  19. Dresselhaus M.S. Down the straight and narrow // Nature(London). 1992. V. 358. P. 195 - 196.
  20. Saito R., Fujita M., Dresselhaus G., Dresselhaus M.S. Electronic structure of chiral graphene tubules // Applied physics letters. 1992. V. 60. P. 2204.
  21. Charlier J.C., Michenaud J.P. Energetics of multilayered carbon tubules // Physical review letters. 1993. V. 70. P. 1858.
  22. White C.T., Robertson D.H., Mintmire J.W. Helical and rotational symmetries of nanoscale graphitic tubules // Physical review B. 1993. V. 47. P. 5485.
  23. Mintmire J.W., Dunlap B.I., White C.T. Are fullerene tubules metallic - // Physical review letters. 1992. V. 68. P. 631.
  24. Vintajjkin B. E. Fizika tverdogo tela: Ucheb. posobie. M.: MGTU im. N.EH. Baumana. 2006. 360 s.
  25. Erkovich O.S., Ivliev P.A. Raschet magnitnykh svojjstv odnoslojjnykh uglerodnykh nanotrubok v ramkakh metoda funkcionalov plotnosti // Vestnik MGTU im. N.EH. Baumana. Ser. Estestvennye nauki. 2016. № 4. S. 55-63.
  26. Magda G.Z., Jin X., Hagymasi I., Vancso P., Osvath Z., Nemes-Incze P., Hwang C., Biro L.P., Tapaszto L. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. 2014. V. 514. P. 608-611.
  27. Saenko N.S., Ziatdinov A.M. Stroenie i magnitnye svojjstva mnogoslojjnykh uglerodnykh nanotrubok, poluchennykh kataliticheskim pirolizom metana // Vestnik DVO RAN. 2012. № 5. S. 41-49.