350 rub
Journal №4 for 2016 г.
Article in number:
Modeling of the behavior of small carbon cluster C3 during heating in argon
Authors:
N.M. Barbin - Dr.Sc. (Eng.), Professor, Ural Institute of State Fire Service of Emercom of Russia, Ural Agrarian State University, Ekaterinburg E-mail: NMBarbin@mail.ru V.P. Dan - Post-graduare Student, Ural Institute of State Fire Service of Emercom of Russia, Ekaterinburg E-mail: danvp_92@mail.ru D.I. Terentiev - Ph.D. (Eng.), Associate Professor, Ural Institute of State Fire Service of Emercom of Russia, Ekaterinburg S.G. Alekseev - Ph.D. (Chem.), Associate Professor, Ural Institute of State Fire Service of Emercom of Russia, Ekaterinburg
Abstract:
The carbon nanoparticles possess a number of properties, largely depending on their quality, such as conductivity, great tensile strength in combination with high values of elastic deformation, the diamagnetic properties. The presence of these properties is determined by a high strength carbon-carbon bonds, colossal strength packing of atoms, no (negligible or low density) of structural defects. Thermodynamic modeling is thermodynamic analysis of the equilibrium of system in general (a complete thermodynamic analysis). One of the most developed and effective programs that implement such thermodynamic calculations, is the complex program TERRA, representing a stage of further development of the software package ASTRA. However, thermal properties of carbon nanomaterials are not well understood. This article studied the behavior of nanocarbon C3 heating in an argon atmosphere at a pressure of 105 PA. Nanocarbon C3 is a molecule, which consists of 3 carbon atoms. The research was carried out by the method of thermodynamic modeling. Computer experiment allows to determine the phase distribution of carbon in the system C3-Ar in all considered temperature range. Descriptions of reactions with distinguishing the temperature intervals are described in graphics, that were discussed earlier to allocate temperature intervals of the reactions. In the system flow physico-chemical processes that can be divided into 4 groups: molization reactions occurring in the condensed phase, the thermal dissociation reactions occurring in the condensed phase, the evaporation reaction of molization, the evaporation reaction with thermal dissociation. According to these equations, using calculations of concentration found in model of components of the condensed and gas phases corresponding equilibrium constants were calculated. For the most important reactions they presented analytical equations: lnKi = Ai + Bi (1/T). (A) the factor influencing the position (offset) straight relative to the x-axis. With increasing of this factor, we can see that the line stands higher on the graphic and reaction products produced. The coefficient (B) indicates the angle between the direct constants of the reaction and the x-axis. The larger this ratio, the stronger the reaction takes place with increasing temperature. Computer modeling of thermodynamic heating carbon nanoparticles C3 at atmospheric pressure under inert gas (argon) was conducted. As a result of investigation the processes and temperature ranges reactions were determined. The graphics of the dependences of the compositions of phases on temperature in the studied system are constructed. Constants of reactions and plots of constant values of reaction temperature in the system were calculated.
Pages: 8-13
References

 

  1. Suzdalev I.P. Nanotekhnologija. Fizko-khimija nanoklasterov, nanostruktur i nanomaterialov. M.: KomKniga, 2006. 592 s.
  2. Kobayashi K., Nagase S. Structures and electronic properties of endohedral metallofullerenes: theory and experiment // Endofullerenes. A new family of carbon clusters; eds. T. Akasaka, S. Nagase. Dodrecht - Boston ? London: Kluwer Academic Publ. 2002. 
  3. P. 99-119.
  4. Pietzak B., Weidinger A., Dinse K.-P., Hirsch A. Group V endohedral fullerenes: N@C60, N@C70 and P@C60 // Endofullerenes. A. New Family of Carbon Clusters; eds. T. Akasaka, S. Nagase. Dodrecht - Boston - London: Kluwer Academic Publ. 2002. 
  5. P. 13-66.
  6. Deng Q., Popov A.A. Clusters encapsulated in endohedral metallofullerenes: how strained are they // J. Am. Chem. Soc. 2014. 
  7. V. 136. P. 4257-4264.
  8. Popov, A.A., Dunsch L. Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M=Sc, Y; 2n=
  9. =68-98): a Density Functional Theory study // J. Am. Chem. Soc. 2007. V. 129. P. 11835-11849.
  10. Efremov I.F. Periodicheskie kolloidnye struktury. L.: KHimija, 1971. 186 s.
  11. Cai W., Shao N., Shao X., Pan Z. Structural analysis of carbon clusters by using a global optimization algo-rithm with Brenner potential // J. Mol. Struct. (Theochem). 2004. V. 678. P. 113-122.
  12. Fleming R.M., Hessen V., Siegriest T., Kortan A.R., Marsh P., Tyeko R., Dabbagh S., Haddon R.C. Fullerenes: Synthesis, Properties and Chemistry of Large Carbon Clusters // Americal Chemical Society. l991. V. 481. P. 25.
  13. Journet C. et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique // Nature. 1997. V. 388. 
  14. P. 756.
  15. Charlier A. et al. Classifications for double-walled carbon nanotubes // Carbon. 1999. V. 37. P. 1779.
  16. Vatolin N.A., Moiseev G.K., Trusov B.G. Termodinamicheskoe modelirovanie v vysokotemperaturnykh sistemakh. M.: Metallurgija, 1994. 352 s.
  17. Kolbin T.S., Barbin N.M., Terentev D.I., Alekseev S.G. The behavior of Eu, Pu, Am radionuclide at burning radioactive graphite in an oxygen atmosphere. Computer experiment. EPJ Web of Conferences. 2015. 82. 01013. DOI: 10.1051/eplconf/20158201013
  18. Moiseev G.K., Vatolin N.A. Kompjuternoe modelirovanie obrazovanija razlichnykh kondensirovannykh form ugleroda // ZHurnal fizicheskojj khimii. 2002. T. 76. № 8. S. 1366-1370.
  19. Moiseev G.K., Vatolin N.A. Ocenka termodinamicheskikh svojjstv rjada kondensirovannykh uglerodnykh soedinenijj // ZHurnal fizicheskojj khimii. 2002. T. 76. № 3. S. 424-428.
  20. Moiseev G.K., Vatolin N.A. Termodinamicheskie svojjstva nekotorykh gazoobraznykh fullerenov // ZHurnal fizicheskojj khimii. 2002. T. 76. № 2. S. 217-220.
  21. Moiseev G.K., Vatolin N.A. Ocenka standartnojj ehntalpii obrazovanija (SEHO) metastabilnykh kondensirovannykh «malykh» samoassociativov ugleroda i nekotorykh metallov // Doklady akademii nauk. 2003. T. 392. № 5. S. 653-656.
  22. Gurevich L.V., Vejjc I.V., Medvedev V.A. Termodinamicheskie svojjstva individualnykh veshhestv: Spravochnik. V 4-kh tomakh. M.: Nauka. 1982. 8540 s.
  23. Alemasov V.E., Dergalin A.F., Tishin A.P. Termodinamicheskie i teplofizicheskie svojjstva produktov sgoranija: Spravochnik v 5-ti tomakh. M.: VNIITI. 1971. 6350 s.