350 rub
Journal №4 for 2016 г.
Article in number:
Skin effect in a metallic type carbon nanotubes
Authors:
O.S. Erkovich - Ph.D. (Phys.-Math.), Associate Professor, Bauman Moscow State Technical University
E-mail: fn@bmstu.ru
P.A. Ivliev - Post-graduate Student, Bauman Moscow State Technical University
E-mail: ivliev-pavel@mail.ru
Abstract:
The results of theoretical studies of the interaction of longitudinally incident electromagnetic radiation on single-walled carbon nanotube metal type considered in the approximation of a right circular cylinder, taking into account the electron-electron interaction are presented. Based on Maxwell\\\'s equations and using the differential form of Ohm\\\'s law, the recording, the dependence of the wave number and thickness of the skin-layer of nanotubes on the frequency of the external radiation. We consider the approximation in which the electronic conductivity of the gas is constant and does not depend on time. An expression for the thickness of the skin layer, depending on the frequency of the incident radiation. Also obtained in the form depending on the size of the electron density, which, as has been shown in previous studies, determined by the diameter of the nanotube. Conducted calculations the thickness of the skin layer for a wide range of wavelengths, from radio spectrum to visible light. It is found that the electromagnetic terahertz radiation and visible range is absorbed nanotubes. It is found that the radio waves pass freely through the single-walled carbon nanotubes because the thickness of the skin layer are much larger than the length of the object The conclusions of this theoretical study are in full agreement with the available experimental data on this topic.
Pages: 3-7
References
- Gao B., Chen Y.F., Fuhrer M.S., Glattli D.C., Bachtold A. Four-point Resistance of individual single-wall carbon nanotubes // Physical Review Letters. 2005. № 95. R. 1-4.
- Qin L.C., Zhao X., Hirahara K., Miyamoto Y., Ando Y., Iijima S. The smallest carbon nanotube // Nature. 2000. V. 408. P. 50.
- Vedernikov A.I., CHaplik A.V. Kolebatelnye mody i ehlektronno-fononnoe vzaimodejjstvie v poluprovodnikovykh nanotrubkakh // Fizika i tekhnika poluprovodnikov. 2004. T. 38. № 11. S. 1358-1363.
- Vedernikov A.A. Modelirovanie prostranstvennogo raspredelenija ehlektronnogo gaza v nanotrubke metodom funkcionalov plotnosti // Molodezhnyjj nauchno-tekhnicheskijj vestnik. MGTU im. N.EH. Baumana. 2013. №4. Rezhim dostupa: http://sntbul.bmstu.ru/doc/566136.html(data obrashhenija 25.05.2016).
- Ivliev P.A., Erkovich O.S. Uglerodnye nanotrubki: raspredelenie ehlektronnojj plotnosti, vozmozhnye primenenija // Fizicheskoe obrazovanie v vuzakh. 2014. T. 20. № 1. S. 18.
- Erkovich O.S., Ivliev P.A. Raschet ehlektronnojj plotnosti uglerodnykh nanotrubok vo vneshnem ehlektromagnitnom pole // Nanomaterialy i nanostruktury - XXI vek. 2016. T. 7. № 1. S. 8-13.
- Sadykov N.R., Skorkin N.A. Vozdejjstvie nestacionarnogo ehlektricheskogo polja s razlichnym profilem perednego fronta na uglerodnye nanotrubki // Fizika i tekhnika poluprovodnikov. 2012. T. 46. № 8. S. 1043-1048.
- Vintajjkin B. E. Fizika tverdogo tela: Ucheb. posobie. M.: MGTU im. N.EH. Baumana. 2006. 360 s.
- Dunaevskijj S.M., Rozova M.N., Klenkova N.A. EHlektronnaja struktura grafitovykh nanotrubok // Fizika tverdogo tela. 1997. T. 39. № 6. S. 1118-1121.
- Eleckijj A.V. Transportnye svojjstva uglerodnykh nanotrubok // Uspekhi fizicheskikh nauk. 2009. T. 179. № 3. S. 225-242.
- Ostrovskijj P.M. Provodimost uglerodnykh nanotrubok v prodolnom magnitnom pole // Pisma v ZHEHTF. 2000. T. 72. № 8. S. 600-604.
- Zakharchenko A.A., Petrov B.K. Provodimost odnoslojjnykh uglerodnykh nanotrubok s metallicheskimi svojjstvami v priblizhenii svobodnykh ehlektronov // Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2009. T. 5. № 12. S. 37-42.
- Ivanchenko G.S., Lebedev N.G. Provodimost uglerodnykh nanotrubok, obuslovlennaja migraciejj protonov po ikh poverkhnosti // Fizika tverdogo tela. 2009. T. 51. № 11. S. 2281-2286.
- Zakharchenko A.A., Petrov B.K. EHnergeticheskijj spektr odnoslojjnykh uglerodnykh nanotrubok strukturnogo tipa «ARMCHAIR» v priblizhenii svobodnykh ehlektronov // Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2013. T. 9. № 1. S. 41-47
- Bagraev N.T., Ivanov V.K., Kljachkin L.E., Maljarenko A.M., SHelykh I.A. Ballisticheskaja provodimost kvantovojj provoloki pri konechnykh temperaturakh // Fizika i tekhnika poluprovodnikov. 2000. T. 34. № 6. S. 737-741.
- Novoselov K.S. Two-dimensional gas of massless Dirac fermions in graphene // Nature. 2005. V. 438. P. 197-200.
- Seid-Rzaeva S.M. Relaksacija ehnergii neravnovesnykh ehlektronov v nanotrubke, sformirovannojj svernutojj kvantovojj jamojj // Fizika i tekhnika poluprovodnikov. 2013. T. 47. № 6. S. 793-796.
- Aleksandrov V.A. Fotoehlektricheskijj skin-ehffekt v provodjashhikh plenkakh // ZHurnal tekhnicheskojj fiziki. 2009. T. 79. № 3. S. 84-88.
- Yang Z.P., Lijie C., Bur J.A., Lin S.Y., Ajayan P.M. Experimental observation of an extremely dark material made by a low-density nanotube array // Nano Letters. 2008. V. 8. № 2. R. 446-451.
- Shi H., Baac H.W., Guo L.J. Low density carbon nanotube forest as an index-matched and near perfect absorption coating // Applied Physics Letters. 2011. V. 99. № 21. R. 211103-211106.
- Galkin N.G., Margulis V.A., SHorokhov A.V. EHlektrodinamicheskaja vospriimchivost kvantovojj nanotrubki v parallelnom magnitnom pole // Fizika tverdogo tela. 2002. T. 44. № 3. S. 466-467.
- Grudzinskaja I.S., Kosakovskaja Z.JA., Ovchinnikov O.B., CHaban I.A. Optoakusticheskijj ehffekt v plotnykh slojakh orientirovannykh uglerodnykh nanotrubok: ispolzovanie ego dlja izmerenija koehfficienta pogloshhenija sveta i tolshhin plenok // Akusticheskijj zhurnal. 2006. T. 52. № 3. S. 330-334.
- Danlee Y., Huynen I., Bailly C. Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes // Applied physics letters. 2012. V. 100. R. 213105-213109.