350 rub
Journal №3 for 2016 г.
Article in number:
The simulation algorithm of self-organization of quantum cellular automata at nanoscale structures
Authors:
M.V. Stepanov - Research Scientist, Moscow Technological University (MIREA). Е-mail: nanocompiler000@yandex.ru A.A. Evdokimov - Dr.Sc. (Chem.), Рrofessor, Moscow Technological University (MIREA). Е-mail: evdokimov@mirea.ru
Abstract:
On the basis of neural network approach the algorithm of modeling of self-organization of the polarization state of quantum cellular automata (QCA) in nanoscale circuit. The neural network algorithm shows convergence to steady state with a minimum value of the total energy error - minimizes the functional of the energy error, which is determined by the structure of the task. This status must be sustainable - most energetically favorable state of polarization of the QCA in Nanocircuit. The resulting algorithm for computer-aided design (CAD) for nanoscale functional systems and nano. This algorithm was used in a specially developed by the author for modeling of nano-based QCA. These programs can be used as an integral part of the future of CAD for the design of nano and nano - nanocompiler - CAD for design, development of systems of nanosystems. Association, silicon compiler with neural network algorithm for calculating the topology of the nano on the basis of the QCA will allow you to play on the basis of the QCA circuitry, which is currently performed on the basis of CMOS. Thus, on the one hand, be able to maintain the investment in the architecture and software of the processors and memory modules on the basis of CMOS; on the other hand, it is possible to circumvent the fundamental limits of miniaturization of CMOS, due to the quantum size effects (QSE) at subnanometric the size of the drain, source, gate MOSFETs.
Pages: 43-49
References

 

  1. Scurgay A.I., Porod W., Lent C.S. Signal Processing with Near-Neighbor-Coupled Time-Varying Quantum-Dot Arrays, // IEEE Transaction on Sircuits and Systems - i: Fundamental Theory and Applications. 2000. V. 47. № 8. R. 1212-1222. University of Notre Dame: [sajjt]. URL: www.nd.edu/~qcahome/.
  2. Timler John, Lent C.S. Power gain and dissipation in quantum-dot cellular automate, // Journal of Applied Physics. 2002. V. 91. № 2. R. 823-831. University of Notre Dame: [sajjt]. URL: www.nd.edu/~qcahome/.
  3. Likharev K.K. O vozmozhnosti sozdanija analogovykh i cifrovykh integralnykh skhem na osnove diskretnogo odnoehlektronnogo tunnelirovanija // Mikroehlektronika. 1987. T. 16. Vyp. 3. S. 195-209.
  4. Likharev K.K. Correlated discrete transfer of single electrons in ultrasmall tunnel junctions // IBM J. Res. Develop. 1988. № 1. P. 144-158.
  5. Likharev K.K., Claeson T. Single electronics // Sci. Am. 1992. № 6. P. 80-85.
  6. Tinkham M. Coulomb blockade and an electron in a mesoscopic box // Am. J. Phys. 1996. № 64. R. 343-347.
  7. Dragunov V.P., Neizvestnyjj I.G., Gridchin V.A. Osnovy nanoehlektroniki. M.: Fizmatkniga, Logos. 2006.
  8. Zhang R., Walus K., Wang W., Jullien G.A. A Majority Reduction Technique for Adder Structures in Quantum-dot Cellular Automata // Copyright SPIE International Symposium on Optical Science and Technology, paper 5559-10, Denver, CO, August 2-6, 2004. University of Notre Dame: [sajjt]. URL: www.nd.edu/~qcahome/, www.mina.ubc.ca. 
  9. Walus K., Dysart T., Jullien G.A., Budiman R.A. QCADesigner: A Rapid Design and Simulation Tool for Quantum-Dot Cellular Automata, // Copyright Second International Workshop on Quantum Dots for Quantum Computing and Classical Size Effect Circuits, University of Notre Dame, August 7-9, 2003, Notre Dame, IN. University of Notre Dame: [sajjt]. URL: www.nd.edu/~qcahome/, www.mina.ubc.ca. 
  10. Walus K., Vetteth A., Jullien G.A., Dimitrov V.S. RAM Design Using Quantum-Dot Cellular Automata // 2003. V. 2. R. 160-163. [sajjt]. URL: www.nd.edu/~qcahome/, www.mina.ubc.ca. 
  11. Dubovojj A.N., Rodionov B.N., Egorov S.D., Mazur S.N., Koroteev A.V., Stepanov M.V., KHljustov P.M. Perspektivy primenenija mnogoklasternojj nanotekhnologicheskojj ustanovki dlja issledovanija i izgotovlenija nanoehlementov ehnergosistem kosmicheskikh apparatov // Nanotekhnika. 2013. № 4(36). S. 14-17.
  12. Dubovojj A.N., Rodionov B.N., Egorov S.D., Mazur S.N., Koroteev A.V., Stepanov M.V., KHljustov P.M. Mnogoklasternaja nanotekhnologicheskaja ustanovka dlja issledovanija i izgotovlenija nanoskhem i funkcionalnykh nanosistem dlja sistem ehnergoobespechenija kosmicheskikh apparatov // Nanotekhnika. 2013. № 1(33). S. 91-104.
  13. Stepanov M.V. Topologii nanoehlementov na baze shablonov kvantovykh tochek dlja integralnykh nanoskhem. EHlementarnye bloki dlja stroitelstva bestranzistornykh ventilejj v bibliotechnykh ehlementakh nanokompiljatora (SAPR NEH) // Nanotekhnika. 2007. № 4(12). S. 88-97.
  14. Stepanov M.V., Sokolova ZH.V., Putilin A.B. Nanoehlektronika, nanoehnergetika, nanoskhemy, nanosistemy: Nanokompi­ljator dlja proektirovanija i izgotovlenija 3D nanosistem, kak zakonchennykh izdelijj, na cifrovykh nanofabrikakh // LAP LAMBERT Academic Publishing. Saarbrucken. 2016. Online-Resource: [sajjt]. URL: https://www.lap-publishing.com; katalog «Nanoehlektronika».