350 rub
Journal №3 for 2016 г.
Article in number:
Resistive switching in nanostructured peptide layers
Authors:
A.I. Loskutov - Ph.D. (Chem.), Associate Professor, Moscow State Technological University STANKIN. Е-mail: ailoskutov@yandex.ru A.M. Mandel - Ph.D. (Phys.-Math.), Professor, Moscow State Technological University STANKIN. E-mail: arkadimandel@mail.ru V.B. Oshurko - Dr.Sc. (Phys.-Math.), Professor, Head of Department, Moscow State Technological University STANKIN. E-mail: vbo08@yandex.ru V.S. Veretin - Ph.D. (Phys.-Math.), Associate Professor, Plekhanov Russian University of Economics (Moscow). E-mail: ilavvsse@mail.ru G.I. Solomakho - Ph.D. (Phys.-Math.), Professor, Moscow State Technological University STANKIN. E-mail: solgeo@mail.ru N.V. Kosheleva - Post-graduate Student, Moscow State Technological University STANKIN. E-mail: n.kosheleva1990@gmail.com K.G. Solomakho - Post-graduate Student, Moscow State Technological University STANKIN. E-mail: kirgeosol@gmail.com S.A. Egorov - Student, Moscow State Technological University STANKIN. E-mail: sergey_95l@mail.com
Abstract:
Organic electronics is developing very intensively now. Promising elements for it can be nonvolatile organic memory devices based on memristors. A wide variety of peptides and their natural ability to self-assemble make them very perspective candidates for the fabrica-tion of a new generation of organic electronics devices. This paper discusses processes of solid-phase crystallization of the dipeptide (DPT) layers (HCOO?(CH2)2-CO-Glu-Lys-NH?(CH2)6-NH-Lys-Glu-CO?(CH2)2), their structure, morphology and electrical characteristics to determine the practical application of the DPT for preparation stable nanostructures of organic electronics. Direct link between the charge of the molecule of DPT in aqua solution and all these characteristics was found. Increasing pH of solution leads to disruption of zwitterionic state of DPT molecules and growth of its total negative charge. As a result, the mechanism of crystallization and the structure of DPT layers change. Throughout the range of pH variation, the hysteresis (bipolar resistive switching) on the current-voltage characteristics (CVC) was found. The nature of hysteresis occurrence depends on the sign and value of the total charge of DPT molecule. In neutral solutions organic crystals grow, which are composed of neutral molecules. In alkaline solutions the ionic crystals are growing by DPT crystallization. The mechanism of hysteresis appearance also differs in these two cases. In the first case the origin of memristor effect is in good agreement with literature data for organic materials and its appearance can be explained on the basis of the model of filling trap states. The hysteresis in the second case is due to the polarization of DPT dielectric layers. The important role of the interfaces, that affect the structure and electrical properties of the layers, is observed. The results show that regardless of the specific mechanism of hysteresis occurrence DPT can be considered as a perspective material for memristor electronics.
Pages: 26-34
References

 

  1. Linn E., Rosezin R., Kugeler C., Waser R. Complementary resistive switches forpassive nanocrossbar memories // Nat. Mater. 2010. № 5. R. 403‒406.
  2. Waser R., Aono M. Nanoionics-based resistive switching memories // Nat.Mater. 2007. № 6. P. 833‒840.
  3. Meng F., Jiang L., Zheng K., Goh C.F., Lim S., Hng H.H., Freddy B., Chen X.Protein-based memristive nanodevices // Small. 2011. № 7. P. 3016‒3020.
  4. Meng F., Sana B., Li Y., Liu Y., Lim S., Chen X. Bioengineered tunable memristorbased on protein nanocage // Small. 2014. № 10. P. 277‒283.
  5. Mukherjee C., Hota M.K., Naskar D., Kundu S.C., Maiti C.K. Resistive switchingin natural silk fibroin protein-based bio-memristors // Phys. Status Solidi A. 2013. № 210.P. 1797‒1805.
  6. Bag A., Hota M.K., Mallik S., Maiti C.K. Bipolar resistive switching in different plant and animal proteins // In: IEEE 21st International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). 2014. P. 203‒206.
  7. Brorsson, A.C., Kumita, J.R., MacLeod, I., Bolognesi, B., Speretta, E., Luheshi, L.M., Knowles, T.P.J., Dobson, C.M., Crowther, D.C. Methods and models in neurodegenerative and systemic protein aggregation diseases // Front. Biosci. 2010. № 15. P. 373‒396.
  8. Knowles T.P.J., Buehler, M.J. Nanomechanics of functional and pathological amyloid materials // Nature Nanotechnol., 2011. № 6. P. 469‒479.
  9. Lerner E.J. Biomimetic nanotechnology: researchers mimic biology to form nanoscale devices // The Industrial Physicist. 2004. № 10. P. 16‒19.
  10. Dahl J.A., Maddux B.L.S, Hutchison J.E. Toward greener nanosynthesis // Chem.Rev. 2007. № 107. P. 2228‒2269.
  11. Loskutov A.I., Loginov B.A., Bespalov V.A., Oshurko V.B., Romash E.V., Kosheleva N.V., Falin A.V. Strukturnye perekhody v tonkikh slojakh peptidnykh kompozitnykh materialov s nanochasticami serebra i zolota: vlijanie temperatury i vlazhnosti // Nanotekhnika. 2013. № 2(34). S. 34‒40.
  12. Loskutov A.I, Urjupina O.JA., Grigorev S.N., Oshurko V.B., Roldugin V.I. Struktura i ehlektrofizicheskie svojjstva samoorganizovannykh kompozitnykh sloev na osnove peptida i nanochastic serebra // Kolloidnyjj zhurnal. 2013. T. 75. № 3. S. 332-342
  13. Loskutov A.I, Urjupina O.JA., Grigorev S.N., Kosheleva N.V., Oshurko V.B., Romash E.V., Senchikhin I.N., Falin A.V. Issledovanie struktury novykh funkcionalnykh peptidnykh kompozitnykh materialov s nanochasticami zolota // Fiziko-khimija poverkhnosti i zashhita materialov. 2015. T. 51. № 4. S. 411‒419.
  14. Grigorev S.N., Loskutov A.I., Oshurko V.B., Kosheleva N.V., Falin A.V. Antifrikcionnye svojjstva biopolimernykh nanokompozitnykh materialov na osnove peptidov i nanochastic serebra // Nanotekhnika. 2012. № 29. S. 12‒20.
  15. Grzybovski B.A. Charged nanoparticles crystallizing and controlling crystallization: from coatings to nanoparticle surfactants to chemical amplifiers // Cryst Eng Comm. 2014. № 16. P. 9368‒9380.
  16. Patent RF, RU 2 410 392 C2. Dipeptidnye mimetiki nejjrotrofinov NGF i BDNF / S.B. Seredenin, T.A. Gudasheva.
  17. Loskutov A.I, Oshurko V.B., Kosheleva N.V. Samoorganizacija i nadmolekuljarnaja struktura biopolimernykh pokrytijj. M.: Izd. MGTU «STANKIN», 2015. 74 s.
  18. Loskutov A.I., Guskova O.A., Grigor-ev S.N., Oshurko V.B., Tarasiuk A.V., Uryupina O.Ya. Influence of the synthesis conditions of gold nanoparticles on the structure and architectonics of dipeptide composites // Nanopart Res. 2016. № 18 P. 239
  19. Metz B., Kersten G.F.A., Hoogerhout P., Brugghe H.F., Timmermans H.A.M., de Jong A., Meiring H., Hove J. Ten, Hennink W.E., Crommelin D.J.A. and Jiskoot W. Identification of formaldehyde-induced modifications in proteins reactions with model peptides // J. Biol. Chem. 2004. № 279. P. 6235‒6243.
  20. Loskutov A.I., Urjupina O.JA., Grigorev S.N., Oshurko V.B., Roldugin V.I. Formirovanie nanochastic zolota v vodnykh rastvorakh proizvodnykh celljulozy i issledovanie ikh svojjstv // ZHurnal prikladnojj khimii. 2013. T. 86. № 8. S. 1294−1300.
  21.  Loskutov A.I., Mandel A.M., Oshurko V.B., Solomakho K.G. Svojjstva kompozicionnykh materialov na osnove proizvodnykh celljulozy, ionov terbija i nanochastic zolota // Nanomaterialy i nanostruktury - KHKHI vek. 2015. № 3. S. 20‒28.
  22. Zakaria H.M., Shah A., Konieczny M., Hoffmann J.A., Nijdam A.J., Reevers M.E. Small molecule- and amino acid-induced aggregation of gold nanoparticles // Langmuir. 2013. № 29. P. 7661‒7673.
  23. Basavaraja S., Balaji S.D., Lagashetty A., Rajasab A.H., Venkataraman A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum // Materials Research Bulletin. 2008. № 43. P. 1164‒1170.
  24. Ahmad A., Senapathi S., Khan M.I., Kumar R., Sastry M. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete Thermomonospora sp // Langmuir. 2003. № 19. P. 3550‒3553.
  25. Bahrig L., Hickey S.G., Eychmüller A. Mesocrystalline materials and the involvement of oriented attachment - a review // CrystEngComm. 2014. № 16. P. 9408‒9424.
  26. Alfimov M.V., Kadushnikov R.M., SHturkin N.A., Lebedev-Stepanov P.V. Imitacionnoe modelirovanie processov samoorganizacii chastic // Rossijjskie nanotekhnologii. 2006. № 1. S. 127‒133.