350 rub
Journal №1 for 2016 г.
Article in number:
Mass-spectrometric complex investigation method for field emission and thermal properties of composite materials
Authors:
E.O. Popov - Ph.D. (Phys.-Math.), Associate Professor, Senior Research Scientist, A.F. Ioffe Physical Technical Institute (Moscow). E-mail: e.popov@mail.ioffe.ru A.G. Kolosko - Associate Professor, Senior Research Scientist, A.F. Ioffe Physical Technical Institute (Moscow). E-mail: agkolosko@mail.ru S.V. Filippov - Post-graduate Student, A.F. Ioffe Physical Technical Institute (Moscow). E-mail: f_s_v@mail.ru, filippov@kafedrapik.ru P.A. Romanov - Post-graduate Student, A.F. Ioffe Physical Technical Institute (Moscow). E-mail: pashtinho@mail.ru I.L. Fedichkin - Engineer, A.F. Ioffe Physical Technical Institute (Moscow). E-mail: if@spectromass.ru
Abstract:
The multitip field emitter\'s investigation method based on TOF reflective type mass spectrometer and the multi-channel data acquisition and online processing of voltage characteristics allowed us to conduct a complex study of the emission properties of any type flat nanocomposite emitters. The statistics distribution of effective heights of emission centers on the cathode surface and its basic laws were revealed. The data on the composition and kinetics intensity of volatile products arising in interelectrode gap during field emission were collected. The sources of different volatile products arising during field emission, such as oxide, carbon dioxide, water and methane were determined.
Pages: 14-26
References

 

  1. Cole M.T., Mann M., Teo K.B.K., Milne W.I.Emerging Nanotechnologies for Manufacturing // Chapter 5 in book Ahmed W., JacksonM.J. «Engineered carbon nanotube field emission devices». Elsevier Inc. 2015.  551 p.
  2. Balan N.N., Luchnikov P.A., Ivashov E.N. Tekhnologicheskie principy formirovanija plenochnykh ehlementov tunnelnogo nehms preobrazovatelja // Fundamentalnye problemy radioehlektronnogo priborostroenija. 2011. T. 11. № 4. S. 260-267.
  3. Balan N.N., Ivashov E.N., Luchnikov P.A., Nevskijj A.B. Tekhnologicheskie osobennosti formirovanija katodnykh uzlov avtoehmissionnykh i tunnelnykh nano- i mikropriborov // Nanomaterialy i nanostruktury - XXI vek. 2012. № 2. S. 36-43.
  4. Balan N.N., Ivashov E.N., Luchnikov P.A., Nevskijj A.B. Ostrijjnye ehmittery ehlektronov mikropriborov i konstruktivno-tekhnologicheskie osobennosti ikh izgotovlenija // Vestnik nauki Sibiri. 2012. № 3 (4). S. 89-98.
  5. Fursejj G.N.Avtoehlektronnaja ehmissija.SPb: Lan. 2012. 322 s.
  6. Mesjac G.A. EHktony. CH. 1. Vzryvnaja ehmissija ehlektronov. Ekaterinburg: UIF «Nauka». 1993. 184 s.
  7. Egorov N.V., SHeshin E.P.Avtoehlektronnaja ehmissija. Principy i pribory. Dolgoprudnyjj: «Intellekt». 2011. 704 s.
  8. Popov E.O., Popov S.O., Korovin O.P. The software for field emission investigation // ICCP5. Kanazawa, Japan. 1999. R. 1-04.
  9. Bormashov V.S., Nikolski K.N., Baturin A.S., Sheshin E.P. Prediction of field emitter cathode lifetime based on measurement  of I-V curves. // Applied Surface Science. 2003. V. 215. R. 178.
  10. Rupesinghe N.L., Chhowalla M., Teo K.B.K., Amaratunga G.A.J. Field emission vacuum power switch using vertically aligned carbon nanotubes // J. Vac. Sci. Technol. B. 2003. V. 21. R. 338.
  11. Smith R.C., Cox D.C., Silva S.R.P.Electron field emission from a single carbon nanotube: Effects of anode location // Appl. Phys. Lett. 2005. V. 87. R. 103112.
  12. Aplin K.L., Kent B.J., Song W., Castelli C.Field emission performance of multiwalled carbon nanotubes for a low-power spacecraft neutralizer // Acta Astronautica. 2009. V. 64. R. 875.
  13. Chen J., Li J., Yang J., Yan X., Tay B., Xue Q.The hysteresis phenomenon of the field emission from the graphene film // Appl. Phys. Lett. 2011. V. 99. R. 173104.
  14. Li C., Zhang Y., Mann M., Hasko D., Lei W., Wang B., Chu D., Pribat D., Amaratunga G.A.J., Milne W.I.High emission current density, vertically aligned carbon nanotube mesh, field emitter array // Appl. Phys. Lett. 2010. V. 97. R. 113107-1.
  15. Deng J., Yang Y., Zheng R., Cheng G.Temperature dependent field emission performances of carbon nanotube arrays: Speculation on oxygen desorption and defect annealing // Appl. Surface Science. 2012. V. 258. R. 7094.
  16. He K., Su J., Guo D., Xing Y., Zhang G. Mechanical fabrication of carbon nanotube / TiO2 nanoparticle composite films and their field-emission properties // Phys. Status Solidi A. 2011. V. 208. № 10. R. 2388.
  17. Fairchild S.B., Bulmer J.S., Sparkes M., Boeckl J., Cahay M., Back T., Murray P.T., Gruen G., Lange M., Lockwood N.P., Orozco F., O-Neill W., Paukner C., Koziol K.K.K.Field emission from laser cut CNT fibers and films // J. Mater. Res. 2014. V. 29. № 3. R. 392.
  18. Murray P.T., Back T.C., Cahay M.M., Fairchild S.B., Maruyama B., Lockwood N.P., Pasquali M. Evidence for adsorbate-enhanced field emission from carbon nanotube fibers // Appl. Phys. Lett. 2013. V. 103. R. 053113-1.
  19. Leberl D., Ummethala R., Leonhardt A., Hensel B., Tedde S.F., Schmidt O., Hayden O.Characterization of carbon nanotube field emitters in pulsed operation mode // J. Vac. Sci. Technol. B. 2013. V. 31. № 1. R. 012204-1.
  20. Korovin O.P., Popov E.O., SHrednik V.N., Karateckijj S.S. Mnogoostrijjnyjj zhidkometallicheskijj avtoehlektronnyjj ehmitter // Pisma v ZHTF. 1999. T. 25 (8). S. 39.
  21. Leberl D., Hensel B., Kapitza H., Zeininger H., Tedde S. F. High current hybrid single walled carbon nanotube/graphene field emitters // J. Vac. Sci. Technol. B. 2013. V. 31. № 5. R. 052204-1.
  22. Popov E.O., Pashkevich A.A., Pozdnyakov A.O., Pozdnyakov O.F. Multi-walled nanotube polymer composite degradation under high emission current regime as revealed by mass spectrometry // J. Vac. Sci. Technol. B. 2008. V. 26. iss. 2. R. 745.
  23. Kawasaki M., He Z., Gotoh Y., Tsuji H., Ishikawa J. Development of in situ analyzer of field-emission devices // J. Vac. Sci. Technol.V. 2010. V. 28. R. C2A77.
  24. Liu H., Kato S., Saito Y.Empirical expression for the emission site density of nanotube film emitters // J. Vac. Sci. Technol. B. 2009. V. 27. R. 2435.
  25. Elinson M.I.Nenakalivaemye katody. M.: Sovetskoe radio. 1974. 336 s.
  26. Kolosko A.G., Popov E.O., Filippov S.V., Romanov P.A. Statistical dispersion of nanocomposite emission parameters // JVSTB. 2015. V. 33. R. 03C104-1.
  27. Forbes R.G.Development of a simple quantitative test for lack of field emission orthodoxy // Proc. R. Soc. A, 2013. V. 469. R. 20130271.
  28. Filippov S.V., Kolosko A.G., Popov E.O., Terukov E.I. Sravnenie statisticheskikh kharakteristik nanokompozitnykh polevykh ehmitterov raznogo tipa // Grafen i rodstvennye struktury: sintez, proizvodstvo i primenenie // Materialy I Mezhdunar. nauch.-praktich. konf. «SHkola molodykh uchenykh». Tambov. 11-13 nojabrja 2015. S. 38.
  29. Popov E.O., Kolosko A.G., Filippov S.V., Ershov M.V. Development of on-line emission parameters processing research technique of polymer-MWCNT emitters // IEEE. 25th International Vacuum Nanoelectronics Conference. Jeju, Korea. 2012. R. 306.
  30. Popov E.O., Kolosko A.G.Field emission and gases desorption of MWCNT emitters // IEEE. 25th International Vacuum Nanoelectronics Conference. Jeju, Korea. 2012. R. 308.
  31. JUdkina N.A., Kolosko A.G., Filippov S.V., Popov E.O. Kompjuterizirovannoe izuchenie odnorodnosti ehmissionnykh centrov polevykh nanokompozitnykh katodov s pomoshhju avtoehmissionnogo mikroskopa // Sb. dokl. nauchnogo foruma s mezhdunar. uchastiem v ramkakh nedeli nauki SPbPU (Institut metallurgii, mashinostroenija i transporta). SPb: Izd-vo SPbPU. 2015. CH. 1. S. 200.
  32. Filippov S.V., Popov E.O., Kolosko A.G., Romanov P.A. Hysteresis phenomenon of the field emission from carbon nanotube/polymer nanocomposite // Journal of Physics. 2015. V. 643. R. 012101-1.
  33. Kolosko A.G., Ershov M.V., Filippov S.V., Popov E.O. EHvoljucija kharakteristik polevogo ehmittera na osnove kompozita nitrocelljuloza-uglerodnye nanotrubki // PZHTF. 2013. T. 39. Vyp. 10. S. 72.
  34. Kolosko A.G., Popov E.O., Filippov S.V., Romanov P.A. Statistical dispersion of nanocomposite emission parameters // J. Vac. Sci. Technol. B. 2015. V. 33. R. 03C104-1.
  35. Kolosko A.G., Popov E.O., Filippov S.V., Romanov P.A., Terukov E.I.Further investigation of statistical parameters of nanocomposite multi-tip emitters // IEEE, 28th International Vacuum Nanoelectronics Conferernce, 13-17 July, 2015 Guangzhou, China. 2015. R. 40.
  36. Filippov S.V., Popov E.O., Kolosko A.G., Romanov P.A. The technique of field emission parameters research for nanostructured materials improvement // Journal of Physics. 2014. V. 572. R. 012026-1.
  37. Popov E.O., Kolosko A.G., Filippov S.V., Romanov P.A. Mass-spectrum investigation of the phenomena accompanying field electron emission // JVSTB. 2015. V. 33. R. 03C109-1.
  38. Popov E.O., Kolosko A.G., Filippov S.V., Romanov P.A., Forbes R.G.Real-time verification of current-voltage characteristics conformity to the classical field emission theory by \'orthodoxy\' test // IEEE 28th International Vacuum Nanoelectronics Conferernce. 13-17 July 2015.Guangzhou, China. R. 44.