350 rub
Journal №3 for 2015 г.
Article in number:
The study of luminescent, electrical and structural properties of organometallic nanocomposite materials based on cellulose derivatives, Tb3+ ions and gold nanoparticles
Authors:
A.I. Loskutov - Ph.D. (Chem.), Associate Professor, Moscow State Technological University STANKIN A.M. Mandel - Ph.D. (Phys.-Math.), Professor, Moscow State Technological University STANKIN V.B. Oshurko - Dr.Sc. (Phys.-Math.), Professor, Head of Department, Moscow State Technological University STANKIN K.G. Solomakho - Post-graduate Student, Moscow State Technological University STANKIN
Abstract:
Optical luminescent spectroscopy, laser confocal microscopy and STM were used to study the structure, luminescent and electrical properties of new metal-organic coordination compounds based on different cellulose derivatives, gold nanoparticles and Tb3+ ions. The layers of cellulose derivatives form compact globular structures on solid surfaces. Their size and shape depend on the nature of substrate and cellulose derivatives. The formation of Tb-cellulose coordination compounds leads to a significant reduction in the globules sizes and some changing of their shape. Local tunneling current-voltage characteristics of the cellulose derivatives and organometallic complexes have essentially non-linear form. In the organometallic complexes the bandgap and the mechanism of tunneling conductance are not changed. But the nature of the substrate has a much stronger influence. On a silver substrate the size of the globules and the band gap increase. Also the mechanism of tunneling conductivity change. Only lines of terbium are observed in the luminescence spectra of Tb-cellulose solutions. However, in the spectra of Tb-cellulose solid layers new intense lines appear at 670-700 nm and 824 nm. Their spectral width depends on the nature of the cellulose derivatives. The presence of gold nanoparticles has no appreciable effect on the position and intensity of the spectral lines. The assignment of the 670-700 nm and 824 nm bands causes difficulty because they do not belong to the terbium lines or cellulose and we could not find any information about the results of similar studies.
Pages: 20-28
References

 

  1. JArmolenko M.A., Rogachev A.A., Rogachev A.V., Luchnikov P.A., Lju CHzhu Bo. Sintez i morfologija nanokompozicionnykh pokrytijj na osnove oksida cinka i polimetilmetakrilata, poluchennykh ehlektronno-luchevym dispergirovaniem v uslovijakh lazernogo assistirovanija // Nanomaterialy i nanostruktury - XXI vek. 2012. № 1. T. 3. S. 21-28.
  2. JArmolenko M.A., Rogachev A.A., Rogachev A.V., Luchnikov P.A. Osobennosti formirovanija struktury vakuumnykh kompozicionnykh pokrytijj pri ehlektronno-luchevym dispergirovaniem smesi poliehtilena i khlorida medi // Nanomaterialy i nanostruktury - XXI vek. 2012. № 4. T. 3. S. 22-29.
  3. Altunin K.K. Prosvetljajushhie nanokompozicionnye pokrytija na osnove polimernojj matricy s nanochasticami metalla // Nanomaterialy i nanostruktury - KHKHI vek. 2013. № 1. T. 4. S. 9-13.
  4. Rogachev A.A., Luchnikov P.A., Frolov A.M.EHlektricheskaja relaksacija v kompozicionnykh nanostrukturakh na osnove polianilina i chastic serebra // Nanomaterialy i nanostruktury - KHKHI vek. 2014. № 3. T. 5. S. 23-29.
  5. Rogachev A.A., Yarmolenko M.A., Xiaohong Jiang, Chen Ruigi., Luchnikov P.A., Rogachev A.V. Molecular structure, optical, electrical and sensing proper-ties of PANI-based coatings with silver nanoparticles deposited from the active gas phase // Applied Surface Science. 2015. V. 351. P. 811-818.
  6. Park D.H., Hwang S.J.; Oh J.M., Yang, J.H., Choy J.H.Polymer-inorganic supramolecular nanohybrids for red, white, green, and blue applications // Prog. Polym. Sci. 2013. V. 38. S. 144-1486.
  7. Zhao M.Q., Zhang Q., Huang J.Q, Wie F.Hierarchical Nanocomposites Derived from Nanocarbons and Layered Double Hydroxides - Properties, Synthesis, and Applications // Adv. Fund. Mater. 2012.V. 22. R. 675-694.
  8. Anastas P., Warner J. Green Chemistry: Theory and Practice // Oxford University Press; New York, 1998. P. 195.
  9. Loskutov A.I., Vysockijj V.V.,  Roldugin V.I., Urjupina O.JA. Fasetirovanie  poverkhnosti nanochastic zolota i adsorbcija organicheskikh makromolekul // Kolloidnyjj zhurnal. 2009.  T. 71. № 5. S. 652-656.
  10. Loskutov A.I., Urjupina O.JA., Grigorev S.N., Oshurko V.B. Struktura i ehlektrofizicheskie svojjstva samoorganizovannykh kompozitnykh sloev na osnove peptida i nanochastic serebra // Kolloidnyjj zhurnal. 2013. T. 75. № 3. S. 332-342
  11. Loskutov A.I., Urjupina O.JA., Grigorev S.N., Oshurko V.B.,Roldugin V.I.Formirovanie nanochastic zolota v vodnykh rastvorakh proizvodnykh celljulozy  i isledovanie ikh svojjstv // ZHurnal prikladnojj khimii. 2013. T. 86. № 8. S. 1294−1300.
  12. Bănică Florinel-Gabriel.Chemical Sensors and Biosensors:Fundamentals and Applications. Chichester (2012). UK: John Wiley & Sons. P. 576.
  13. Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. // Nat. Methods. 2010. No. 7. P. 603-614
  14. Loskutov A.The study of luminescent, electrical and structural properties of organometallic composite materials based on cellulose derivatives and Tb3+ ions. // Proceedings of the Iran-Belarus 2nd International Conference on Modern Applications of Nanotechnology. C-057.Minsk, Belarus. 6-8 May 2015. P. 1-3.
  15. Loskutov A.I., Urjupina O.JA., Vysockijj V.V., Kiselev M.R. Vlijanie komponentov dispersionnojj sredy na strukturu i svojjstva metall-polimernykh kompozicijj na osnove nanochastic serebra i zolota // Nanotekhnika. 2010. № 21. S. 39-44.
  16. Maljarevich G.K., Gaponenko N.V., Mudryjj A.V., Drozdov JU.N., Steshkova M.V., Stepanova E.A. Fotoljuminescencija  ionov Tb3+ v kserogeljakh aljumoittrievykh granatov // Fizika i tekhnika poluprovodnikov. 2009. T. 43. № 2. S. 170-174
  17. Lachinov A.N., Vorobeva N.V.EHlektronika tonkikh sloev shirokozonnykh polimerov // UFN. 2006. T. 176. № 12. S. 1249-1266.
  18. Xiang Wu, Guanying Chen, Jie Shen, Xhanjun Li, Yuanwei Zhang, Gang Han.Upconversion nanoparticles: a versitile solution to multiscale biological imaging // Bioconjugated Chemistry. 2015. V. 26. № 2. P. 166-175.