350 rub
Journal №2 for 2015 г.
Article in number:
Enhanced optical transmission of the nanocomposite films with silver nanoparticles on various substrates. Part 1. Theoretical background and model
Authors:
К.К. Аltunin - Ph.D. (Phys.-Math.), Associate Professor, Ulyanovsk State Pedagogical University n.a. I.N. Ulyanov. E-mail: teleportation@yandex
Abstract:
The questions of theory and modelling of optical properties of metal-polymer nanocomposite films with metal nanoparticles are dis-cussed. A theoretical model of the optical reflectance and transmittance of the nanocomposite film in an optical radiation external field is proposed. The analytical expressions for the amplitudes of optical fields inside and outside the nanocomposite film containing spherical silver nanoparticles, taking into account the near-zero indices of refraction and absorption, as well as the formula for the complex refractive index of the composite film, taking into account the effect of polarizing the field of nanoparticles, are obtained. These formulas provide computer simulation of the optical properties of the optical nanomaterials with close to zero absorption and refraction indices.
Pages: 4-14
References

 

  1. .Maier S.A. Plasmonics: fundamentals and applications. New York, Springer. 2007. 224 p.
  2. Mayer K.M., Hafner J.H. Localized surface plasmon resonance sensors // Chem. Rev. 2011. V. 111. № 6. P. 3828-3857.
  3. Lal S., Link S., Halas N.J. Nano-optics from sensing to waveguiding // Nat. Photonics. 2007. V. 1. R. 641-648.
  4. Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials // Science. 2007. V. 317. R. 1698-1702.
  5. Atwater H.A., Polman A. Plasmonics for improved photovoltaic devices // Nat. Mater. 2010. V. 9. R. 205-213.
  6. Mock J.J., Barbic M., Smith D.R., Schultz D.A., Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles // J. Chem. Phys. 2002. V. 116. R. 6755-6759.
  7. Tam F., Goodrich G.P., Johnson B.R., Halas N.J. Plasmonic enhancement of molecular fluorescence // Nano Lett. 2007. V. 7. R. 496-501.
  8. Danckwerts M., Novotny L. Optical frequency mixing at coupled gold nanoparticles // Phys. Rev. Lett. 2007. V. 98. 026104. R. 1-4.
  9. Kim S., Jin J., Kim Y., Park I., Kim Y., Kim S. High harmonic generation by resonant plasmon field enhancement // Nature. 2008. V. 453. R. 757-760.
  10. Kinkhabwala A., Yu. Z., Fan S., Avlasevich Y., Mellen K., Moerner W.E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna // Nat. Photonics. 2009. V. 3. R. 654-657.
  11. Nie S., Emory S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering // Science. 1997. V. 275. R. 1102-1106.
  12. Kneipp J., Kneipp H., Kneipp K. SERS-a single molecule and nanoscale tool for bioanalytics // Chem. Soc. Rev. 2008. V. 37. R. 1052-1060.
  13. Rodriguez-Lorenzo L., Alvarez-Puebla R.A., Pastoriza-Santos I., Mazzucco S., Stephan O., Kociak M., Liz-Marzan L.M., de Abajo F.J.G.Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering // J. Am. Chem. Soc. 2009. V. 131. R. 4616-4618.
  14. Le F., Brandl D.W., Urzhumov Y.A., Wang H., Kundu J., Halas N.J., Aizpurua J., Nordlander P. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption // ACS Nano. 2008. V. 2. R. 707-718.
  15. Neubrech F., Pucci A., Cornelius T.W., Karim S., Garcna-Etxarri A., Aizpurua J. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection // Phys. Rev. Lett. 2008. V. 101. 157403. R. 1-4.
  16. Adato R., Yanik A.A., Amsden J.J., Kaplan D.L., Omenetto F.G., Hong M.K., Erramilli S., Altug H. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays // Proc. Natl. Acad. Sci. 2009. V. 106. R. 19227-19232.
  17. Ebbesen T.W., Lezec H.J., Ghaemi H.F., Thio T., Wolff P.A. Extraordinary optical transmission through sub-wavelength hole arrays // Nature. 1998. V. 391. R. 667-669.
  18. Soukoulis C.M., Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials // Nat. Photonics, 2011. V. 5. R. 523-530.
  19. Zheludev N.I., Kivshar Y.S. From metamaterials to metadevices // Nat. Mater. 2012. V. 11. R. 917-924.
  20. Sovremennye kompozicionnye materialy // Per. s angl. pod red. L. Brautmana, R.M. Kroka. Mir. 1970. 672 s.
  21. Pomogajjlo A.D., Rozenberg A.S., Ufljand I.E.Nanochasticy metallov v polimerakh. M.: KHimija. 2000. 672 s.
  22. Gusev A.I. Nanomaterialy, nanostruktury, nanotekhnologii. M.: Fizmatlit. 2005. 416 s.
  23. Zolotukhin I.V., Kalinin JU.E., Stognejj O.E. Novye napravlenija fizicheskogo materialovedenija. Voronezh: Izdatelstvo Voronezhskogo gosudarstvennogo universiteta. 2000. 360 s.
  24. Kerber M.L. Kompozicionnye materialy // Sorosovskijj obrazovatelnyjj zhurnal. 1999. № 5. S. 33-41.
  25. JArmolenko M.A., Rogachev A.A., Rogachev A.V., Luchnikov P.A., Gorbachev D.L. Tonkoplenochnye kompozity na osnove poliehtilena s vkljucheniem nanochastic medi // Izvestija vuzov. Ser. Fizika. 2013. T. 56. № 1/2. S. 147-150.
  26. JArmolenko M.A., Rogachev A.A., Luchnikov P.A., Rogachev A.V. Struktura vakuumnykh kompozicionnykh pokrytijj polimer - serebro, osazhdennykh pri ehlektronno-luchevom raspylenii komponentov // Izvestija VUZov. Ser. Fizika. 2013. T. 56. № 1/2. S. 276-279.
  27. JArmolenko M.A., Luchnikov P.A., Rogachev A.A.Poluchenie plenochnykh kompozitov s nanochasticami serebra na osnove limonnojj kisloty // Nanomaterialy i nanostruktury - KHKHI vek. 2014. T. 5. № 1. S. 36-41.
  28. JArmolenko M.A., Luchnikov P.A., Rogachev A.A.Plazmonnoe pogloshhenie v nanokompozitakh na osnove stearinovojj kisloty s nanochasticami serebra // Nanomaterialy i nanostruktury - KHKHI vek. 2014. T. 5. № 2. S. 21-27.
  29. Luchnikov P.A., JArmolenko M.A., Rogachev A.A, Luchnikov A.P. Segregacija nanochastic serebra v sloistykh metall-polimernykh geterostrukturakh pri termicheskojj obrabotke // EHlektronnaja tekhnika. Serija 2. Poluprovodnikovye pribory. 2014. Vyp. 2(233). S. 63-72.
  30. Altunin K.K., Gadomsky O.N. High-negative effective refractive index of silver nanoparticles in nanocomposite films // Optics Communications. 2012. V. 285. № 5. R. 816-820.
  31. Sukhov S.V. Nanokompozitnyjj material s edinichnym pokazatelem prelomlenija. // Kvantovaja ehlektronika. 2005. T. 35. № 8. S. 741-744.
  32. Landau L.D., Lifshic E.M. EHlektrodinamika sploshnykh sred. M.: Fizmatgiz. 2001. 656 s.
  33. Gadomskijj O.N., Stepin S.N., Ushakov N.M., Altunin K.K., Rusin A.A., Zubkov E.G. Usilennoe opticheskoe propuskanie kompozitnykh nanostrukturnykh tolstykh plenok s kvazinulevym pokazatelem prelomlenija (I. EHksperimentalnye dannye) // Izvestija vysshikh uchebnykh zavedenijj. Povolzhskijj region. Fiziko-matematicheskie nauki. 2012. № 4 (24). S. 227-236.
  34. Johnson P.B., Christy R.W. Optical constants of the noble metals // Phys. Rev. B. 1972. V. 6. № 12. R. 4370-4379.