350 rub
Journal №4 for 2014 г.
Article in number:
Investment of components and assembles of a heterogeneous photonic integrated circuit for optical interconnect
Authors:
M.E. Belkin - Sc.Dr. (Eng.), Professor, Moscow State Technical University of Radio-Engineering, Electronics and Automation E-mail: belkin@mirea.ru T.N.Bakhvalova - Post-graduate Student, Moscow State Technical University of Radio-Engineering, Electronics and Automation I.V. Khmelnitski - Graduate Researcher, Moscow State Technical University of Radio-Engineering, Electronics and Automation
Abstract:
With the goal of designing high-speed duplex optical interconnect based on heterogeneous photonic integrated circuit the needed active and passive components are invested and simulated. First of all, a circuit of digital optical interconnect unit with a bitrate of 10 Gbit/s valuable for heterogeneous photonic IC is described and designed. Then, key passive and active integrated components of this IC, including channel and photonic-crystal waveguides, photonic-crystal spectral diplexer, vertical cavity surface emitting laser and pin-photodiode, are simulated. Lastly, a technique of suitable optical bonding between a silica wafer and active components is selected and demonstrated.
Pages: 29-42
References

 

  1. Goodman J.W., et al.Optical interconnection sfor VLSI systems // Proceedings of IEEE. 1984. V. 72. P. 850-866.
  2. Belkin M.E., Sigov A.S. Opticheskie mezhsoedinenija v integralnykh skhemakh // Nanoindustrija. 2012. №1(31). S. 8-14.
  3. Krishnamoorthy A.V., Goossen K.W. Optoelectronic-VLSI: Photonics Integrated with VLSI Circuits // IEEE Journal of Selected Topics in Quantum Electronics. 1998. V. 4. № 6. P. 899-912.
  4. The National Technology Roadmap for Semiconductors Technology Needs. Semiconductor Industry Association. 1997.
  5. Www.itrs.net. More-than-Moore. White paper. 2011. 31 p.
  6. Fang A.W., Koch B., Norberg, E., et al.Heterogeneous integration as a manufacturing platform for photonic integrated circuits // IEEE Photonics Conference (IPC). 2013. P. 87-88.
  7. Belkin M.E., Sigov A.S. Issledovanie problem sozdanija opticheskikh mezhsoedinenijj // Nanoindustrija, 2012. №2(32). S. 18-28.
  8. Belkin M.E., Kostenko K.N., Mishina E.D. Sovremennye metody i sredstva avtomatizirovannogo proektirovanija kanalnykh i fotonnokristallicheskikh volnovodnykh struktur dlja passivnykh ehlementov OIS i OEHIS // Fundamentalnye problemy radioehlektronnogo priborostroenija / Materialy mezhdunarodnojj NTK «INTERMATIC-2009» (dekabr 2009 g., Moskva). M.: EHnergoatomizdat. 2009. CH. 2. S. 202-212.
  9. Photonic Crystals: Physics and Technology (Ed. C. Sibilia, T.M. Benson, M. Marciniak, T. Szoplik). Springer-Verlag Italia.., 2008.
  10. Bakhvalova T.N., Belkin M.E. Modelirovanie fotonno-kristalicheskogo spektralnogo demultipleksora // Nano- i mikrosistemnaja tekhnika, 2012. № 1. S. 27-30.
  11. Kapon E., Sirbu A. Long wavelength VCSELs: power efficient answer // Nature Photonics. 2009. V. 3. P. 27-29.
  12. Koyama F. Recent advances of VCSEL photonics // IEEE Journal of Lightwave Technology, 2006. V. 24. № 12. P. 4502-4513.
  13. Belkin M.E. Komponentnaja baza telekommunikacionnykh VOSP. M.: MIREHA. 2011. 136 s.
  14. Belkin M.E., Dzichkovskijj N.A., Indrishenok V.I. Modelirovanie sverkhbystrodejjstvujushhikh p-i-n-fotodiodnykh geterostruktur // Nano- i mikrosistemnaja tekhnika, 2008. № 10 (99). S. 23-27.
  15. Tekhnika opticheskojj svjazi. Fotopriemniki / Pod red. U. Tsanga: Per. s angl. pod red. M.A. Trishenkova. M.: Mir. 1988. 526 s.
  16. Bowers J. E., Burrus C.A. Ultrawide-Band Long-Wavelength p-i-n Photodetectors // IEEE Journal of Lightwave Technology. 1987. LT-5. № 10. P. 1339-1350.
  17. Agethen M., et al. InGaAs p-i-n Detectors for Frequencies above 100 GHz // IEEE Indium Phosphide and Relative Materials Conference. IPRM-2002. 2002. A8-2. P. 673-676.
  18. Koyama F. Advances of VCSEL Photonics for Optical Interconnects // 10th IEEE International Conference on Solid-State and Integrated Circuit Technology. ICSICT, 2010. P. 1223-1226.
  19. Kurata Y., Nasu Yu., Tamura M., et al. Fabrication of InP-PDs on Silica-Based PLC Using Heterogeneous Integration Technique // IEEE Journal of Lightwave Technology, 2014. V. 32. № 16. P. 2841-2848.