350 rub
Journal №3 for 2014 г.
Article in number:
Nanostructured vertical cavity surface-emitting laser of spectral O- and C-ranges as a key element of microwave photonics devices
Authors:
M. Belkin - Dr. Sc. (Eng.), Professor, Moscow State Technical University of Radio-Engineering, Electronics and Automation (MIREA). E-mail: belkin@mirea.ru V. Iakovlev - Ph. D, Senior Researcher, École Polytechnique Fédérale de Lausanne, Switzerland
Abstract:
We present description of the state of the art in fabrication and parameters of surface-emitting laser with a vertical cavity developed in the laboratory of physics of nanostructures (LPN, EPFL) and their key advantages as component for microwave photonics on several application examples. First we present the basic structural features and state of the art static (electrical, energy, spectral, spatial) and dynamic (frequency-modulation, the noise, the error rate in the transmission of digital signals at 10 Gb/s) performances of the developed wafer fused VCSELs. Particular attention is paid to its readiness to industrial production, its reliability of operation (one per cent MTBF of over 100 years at 20°C and more than 10 years at 70°C is demonstrated ) and the reproducibility of the radiation parameters across the wafer. Two application examples for such VCSELs as a key components of modern electronic systems, optoelectronic microwave oscillator and optoelectronic delay circuit for microwave signals are presented A distinguishing features of the oscillator consist in 100% tuning range with 10 dB less phase noise as compared with the transistor based oscillator, as well as in cost reduction due to elimination of costly circuit elements, low power consumption and the possibility of integration in the photonic integrated circuits. The main features of the delay circuit operating in the band from tens of MHz to 10 GHz, are high precision delay setting (error less than 0,5%) and low inserted noise (below 3 dB) in the mi-crowave range. Altogether, the presented results showed high potential of EPFL VCSEL for microwave photonic applications with improved their basic technical and cost parameters, such as speed, operating frequency band, weight and size characteristics, dynamic range, electromagnetic compatibility, etc.
Pages: 37-49
References

 

  1. Capmany J., Novak D. Microwave photonics combines two worlds // Nature Photonics. 2007. V. 1. R. 319−330.
  2. Yao J. Microwave Photonics // IEEE Journal of Lightwave Technology. 2009. V. 27. № 3. R. 314−335.
  3. Belkin M.E., Sigov A.S. Novoe napravlenie fotoniki - sverkhvysokochastotnaja optoehlektronika // Radiotekhnika i ehlektronika. 2009. T. 54. № 8. S. 901−914.
  4. Hietala V.M., Lear K.L., Armendariz M.G., et al. Electrical characterization and application of very high speed vertical cavity surface emitting lasers (VCSELs) // IEEE International Symposium MTT‑S Digest. 1997. R. 355−358.
  5. Iga K. Surface-Emitting Laser - Its Birth and Generation of New Optoelectronics Field // IEEE Journal on Selected Topics in Quantum Electronics. 2000. V. 6. № 6. R. 1201−1215.
  6. Koyama F. Recent advances of VCSEL photonics // IEEE Journal of Lightwave Technology. 2006. V. 24. № 12. R. 4502−4513.
  7. Syrbu A.V., Iakovlev V.P., Berseth C.‑A. et al. 30°C CW Operation of 1,52 µm InGaAsP/AlGaAs Vertical Cavity Lasers with in-situ Built-in Lateral Current Confinement by Localised Fusion // Electronics Letters. 1998. V. 34. R. 1744−1745.
  8. Kapon E., Sirbu A. Long wavelength VCSELs: power efficient answer // Nature Photonics. 2009. V. 3. R. 27−29.
  9. Sirbu A., Suruceanu G., Iakovlev V., Mereuta A., Mickovic Z., et al. Reliability of 1310 nm Wafer Fused VCSELs // IEEE Photonics Technology Letters. 2013. V. 25. № 16. R. 1555−1558.
  10. Mereuta A., Sirbu A., Iakovlev V., Rudra A., Caliman A., Suruceanu G., Berseth C.‑A., Deichsel E., Kapon E. 1,5 µm VCSEL Structure Optimization for High-Power and High Temperature Operation // Journal of Crystal growth. 2004. V. 27. R. 520−525.
  11. Sirbu A., Caliman A., Mereuta A., Iakovlev V., Suruceanu G., Kapon E. Recent progress in wafer-fused VCSELs emitting in the 1550‑nm band // ICTON 2011. No. C5.1.
  12. Belkin M., Sigov A., Ellafi D., Iakovlev V., Kapon E. Nano-Engineering in Long Wavelength Wafer-Fused VCSEL Fabrication for Microwave Photonics // Nanomaterialy i nanostruktury. 2014. T. 5. № 2. S. 33−47.
  13. Mircea A., Caliman A., Iakovlev V., et al. Cavity Mode - Gain Peak Tradeoff for 1320‑nm Wafer-Fused VCSELs With 3‑mW Single-Mode Emission Power and 10‑Gb/s Modulation Speed Up to 70°C // IEEE Photonics Technology Letters. 2007. V. 19. R. 121−123.
  14. Caliman A., Iakovlev V., Mereuta A., et al. 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550‑nm band // Optics Express. 2011. V. 19. R. 6996−17001.
  15. Iakovlev V., Sirbu A., Mickovic Z., et al. Progress and challenges in industrial fabrication of wafer-fused VCSELs emitting in the 1310 nm band for high speed wavelength division multiplexing applications // in Proceedingsof SPIE. 2013. V. 8639. R. 863904‑1− 863904‑7.
  16. Belkin M.E., Loparev A.V. Optoehlektronnyjj generator - pervoe prakticheskoe ustrojjstvo SVCH optoehlektroniki // EHlektronika: nauka, tekhnologija, biznes. 2010. № 6. S. 62−70.
  17. http://www.oewaves.com.
  18. Taranenko V.P. EHlektricheskaja perestrojjka chastoty tverdotelnykh SVCH-generatorov varaktorami // Izvestija VUZov. Ser. Radioehlektronika. 1976. T. 19. № 10. S. 5−15.
  19. Poluprovodnikovye pribory v skhemakh SVCH / Pod red. M. KHauehsa, D. Morgana. Per. s angl. pod red. V.S. EHtkina. M.: Mir. 1979. 444 s.
  20. Yao X.S. Opto-electronic Oscillators // In. book: RF Photonic Technology in Optical Fiber Links / Ed. by W.S.C. Chang. Cambridge University Press. 2002. R. 255−292.
  21. Belkin M.E., Loparev A., Semenova Y., Farrell G., Sigov A.S. A Tunable RF-Band Optoelectronic Oscillator and OE-CAD Model for its Simulation // Microwave and Optical Technology Letters. 2011. V. 53. № 11. R. 2474−2477.
  22. Belkin M.E., Loparev A.V. Optoehlektronnyjj generator SVCH-signalov: modelirovanie, issledovanie spektralnykh i shumovykh kharakteristik // Nano- i mikrosistemnaja tekhnika. 2011. № 9. S. 29−33.
  23. Belkin M.E., Loparev A.V. A Microwave Optoelectronic Oscillator: Mach-Zehnder Modulator or VCSEL Based Layout Comparison // PIERS Proceedings. 2012. Moscow. R. 1138−1142.
  24. Parker D., Zimmermann D.C. Phased arrays-part II: implementations, applications, and future trends // IEEE Transactions on Microwave Theory and Techniques. 50‑th Anniversary Issue. 2002. V. 50. № 3. R. 688−698.
  25. Wurtz L.T., Wheless W.P. Design of a programmable 2−18 GHz microwave fiber-optic delay line. IEEE Southeastcon-97 Conference Proceedings. 1997. R. 11−19.
  26. Frolov A.D. Radiodetali i uzly. M.: Vysshaja shkola. 1975. 440 s.
  27. Newberg I.L., et al. Long Microwave Delay Fiber-Optic Link for Radar Testing // IEEE Transactions on Microwave Theory and Techniques. 1990. V. 38. № 5. R. 864−866.
  28. Belkin M.E., Belkin L.M. Issledovanie kharakteristiki vremeni zaderzhki vkljuchenija poverkhnostno-izluchajushhego lazera s vertikalnym rezonatorom. Nano- i mikrosistemnaja tekhnika. 2010. № 11. S. 51−54.