350 rub
Journal №3 for 2014 г.
Article in number:
Electrical relaxation in composite nanostructures based on polyaniline and silver particles
Authors:
A.A. Rogachev - Ph. D. (Eng.), Senior Research Scientist, Belarusian State University of Transport (Homel). Е-mail: rogachevfv@mail.ru A.P. Luchnikov - Head of Laboratory, Moscow State Institute of Radio-Engeneering, Electronics and Automation (Technical University). Е-mail: xamdex@gmail.com A.M. Frolov - Student, Belarusian State University of Transport (Homel). Е-mail: rogachev78@mail.ru
Abstract:
The solvent-free plasma-chemical method deposition of conductive nanocomposite coatings based on polyaniline (PANI) was shown. It was established that during the growth of the polymer composite coating with electron beam dispersion of mechanical mixture components PANI and silver chloride takes place process of silver nanoclusters formation, protonation of emiraldine base and the creation of electrically conducting chains of PANI salt. The impedance spectroscopy method was revealed that the maximum electrical conductivity have composite nanoscale coatings PANI + AgCl thickness of 90 nm is due to the presence of silver nanoclusters that facilitate transport of charge carriers tunnel across the thin film system and conductive oriented chains of PANI ensure the relaxation by the charge hopping mechanism.
Pages: 23-29
References

 

  1. Alan J. Heeger Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials // J. Phys. Chem. B. 2001. V. 105. N. 36. P. 8475−8491.
  2. Skotheim T., Elsenbaumer R., Reynolds J., (eds.) Handbook of Conducting Polymers. Marcel Dekker. Inc., 1998. 467 r.
  3. Jing Xu, Jie Xiao, Zhiye Zhang, Xinlong Wang, Xiaodong Chen, Xiushan Yang, Wei Zhang and Lin Yang Modified polyaniline and its effects on the microstructure and antistatic properties of PP/PANI−APP/CPP composites // Journal of Applied Polymer Science. 2014. V. 131. № 17. P. 1456−1463.
  4. Vasileva I.S. Fermentativnyjj sintez, struktura i svojjstva ehlektroprovodjashhego polianilina. Avtoref. diss. k.kh.n.: 03.01.04. IBKH RAN. M., 2010.
  5. Zhubo Liu, Rogachev A.V., Bing Zhou, Yarmolenko M.A., Rogachev A.A., Gorbachev D.L., Xiaohong Jiang. Effects of polyvinyl chloride and aluminum trichloride on structure and property of polyaniline composite films by electron beam deposition // Polymer Engineering and Science. 2013. N. 53(3). P. 502−506.
  6. Trchova M., Sedenkova I., Konyushenko E.N., Stejskal J., Ciric-Marjanovic P.H.G. Evolution of Polyaniline Nanotubes: The Oxidation of Aniline in Water // J. Phys. Chem. B. 2006. 110. P. 9461−9468.
  7. Trivedi D.C. in Handbook of Organic Conductive Molecules and Polymers V. 2 (Ed. H S Nalwa) (Chichester: Wiley, 1997) P. 505.
  8. Tarutina L.I., Pozdnjakova F.O. Spektralnyjj analiz polimerov. L.: KHimija. 1986.248 s.
  9. Asturias G.E., MacDiarmid A.G., McCall R.P., Epstein A.J. The oxidation state of «emeraldine» base // Synthetic Metals. 1989. P. 157−162.
  10. Nekrasov A.A., Ivanov V.F., Vannikov A.V. // J. Electroanal. Chem. 2000. V. 482/ № 1. R. 11−17.
  11. Banerjee S., Sarma S., Kumar A. Photoluminescence studies in HCl-doped polyaniline nanofibers // J. Opt. 2009. 38. R. 124−130.
  12. Zhang J.H., Li X.L., Liu K., Cui Z.C., Zhang G., Zhao B., Yang B. // Thin films of Ag nanoparticles prepared from the reduction of AgI nanoparticles in self-assembled films // J. Colloid Interface Sci. 2002. V. 255. P. 115−118.
  13. Kahol P.K., Pinto N.J., Berndtsson E.J., McCormick B.J. Electron localization effects on the conducting state in polyaniline // J. Phys.: Condens. Matter. 1994. V. 6. № 9 P. 5631−5645.
  14. Rogachev A.A., Tamulevičius S., Rogachev A.V., Prosycevas I. Mindaugas Andrulevičius Features of Polytetrafluoroethylene Coating Growth on Activated Surfaces from Gas Phase // H.‑G. Rubahn, H. Sitter, G. Horowitz, K.Al-Shamery, Ed.s Interface controlled organic thin films. Springer Proceedings Physics. Berlin. 2009. P. 85−89.
  15. Rahachou A.V., Rogachev A.A., Yarmolenko M.A., Xiaohong Jiang., Zhubo Liu Molecular structure and optical properties of PTFE-based nanocomposite polymer-metal coatings // Applied Surface Science. 2012. № 258. R. 1976−1980.
  16. Soares B.G., Leyva M.E., Barra G.M.O., Khastgir D. Dielectric behavior of polyaniline synthesized by different techniques // European Polymer Journal. 2006. V. 42. № 3. P. 676−686.
  17. Bianchi R.F., Cunha H.N., Faria R.M., Leal Ferreira G.F., Mariz J., Neto G. Electrical studies on the doping dependence and electrode effect of metal-PANI-metal structures // J. Phys. D: Appl. Phys. 2005. V. 38. P. 1437−1443.
  18. JArmolenko M.A., Egorov A.I., Luchnikov P.A., Rogachev A.V., CHzhubo Lju. Kompozicionnye polimer-polimernye nanostruktury na osnove poliehtilena dlja sorbcionnykh datchikov // Nanomaterialy i nanostruktury − KHKHI vek. 2013. T. 4. № 4. S. 42−50.
  19. JArmolenko M.A., Egorov A.I., Luchnikov P.A., CHzhubo Lju. Processy legirovanija vakuumnykh polimernykh pokrytijj na osnove polianilina // Fundamentalnye problemy radioehlektronnogo priborostroenija / Pod red. akad. RAN A.S. Sigova. M.: EHnergoatomizdat. 2013. CH. 2. S. 169−173.
  20. JArmolenko M.A., Luchnikov P.A., Rogachev A.V., CHzhubo Lju. Sorbcionnye svojjstva polimer-polimernykh nanokompozitov // Fundamentalnye problemy radioehlektronnogo priborostroenija / Pod red. akad. RAN A.S. Sigova. M.: EHnergoatomizdat. 2013. CH. 2. S. 178−180.