350 rub
Journal №3 for 2014 г.
Article in number:
Mechanism of electron emission in side-wall carbon nanotubes
Authors:
O.B. Tomilin - Ph. D. (Chem.), Head of Department Physical Chemistry, Ogarev Mordovian State University (Saransk). E-mail: tomilinob@mail.ru E.E. Muryumin - Ph. D. (Chem.), Associate Professor, Department Physical Chemistry, Ogarev Mordovian State University (Saransk). E-mail: mur_ee@mail.ru E.V. Rodionova - Research Scientist, Department Physical Chemistry, Ogarev Mordovian State University (Saransk). E-mail: rodionova_i87@mail.ru
Abstract:
The calculations of electron structure of model fragments of side-wall carbon nanotubes (SWCNT) with chirality (n, 0) and (n, n) were carried out at the Hartree-Fock level using a standard 3-21G basis set. Analysis of molecular orbitals (MO) shows that a molecular orbital where electron density is localized at the ends of the SWCNT exists among vacant MOs, providing favorable conditions for field electron emission (emission molecular orbital). Calculated energies of emission molecular orbitals are similar to experimental energy values of electron field emission from SWCNT. It has been shown that the mechanism of field electron emission from SWCNT has a step character namely: excitement of electrons to emission molecular state and electron emission from the cathodic material. The results may serve as a base for interpretation of causes of dispersion in experimentally observed emission energy of electrons in carbon nanotubes (structural changes of the SWCNT as well as the macrostructure of the cathodic material).
Pages: 10-17
References

 

  1. Chernozatonskii L.A., Gulyaev Yu.V., Kosakovskaya Z.Ya., Sinitsyn N.I., Torgashov G.V., Zakharchenko Yu.F., Fedorov E.A., Val-chuk V.P. Electron field emission from nanofilament carbon films // Chem. Phys. Lett. 1995. V. 233. P. 63−68.
  2. de Heer W.A., Basca W.S., Chatelain A., Gerfin T., Humphrey R., Forro L., Ugarte D. Aligned carbon nanotube films: production and optical and electronic properties // Science. 1995. V. 268. P. 845−847.
  3. Saito Y., Hamaguchi K., Nishino T., Hata K., Tohji K., Rfsuya A., Nishina Y.Field emission patterns from single-walled carbon nanotubes // Jpn. J. Appl. Phys. 1997. V. 36. P. L1340−L1342.
  4. Rinzler A.G., Hafner J.H., Nikolaev P., Lou L., Kim S.G., Tomanek D., Nordlander P., Colbert D.T., Smalley R.E. Unraveling nanotubes: field emission from an atomic wire // Science. 1995. V. 269. P. 1550−1553.
  5. de Heer W., Chatelain A.A., Ugarte D.A. Carbon nanotube field-emission electron source // Science 1995. V. 270. P. 1179−1980.
  6. Collins P.G., Zettl A.A simple and robust electron beam source from carbon nanotubes // Appl. Phys. Lett. 1996. V. 69. P. 1969−1971.
  7. Wahg Q.H., Corrigan T.D., Dai I.Y., Chang R.P.H., Krauss A. Field emission from nanotube bundle emitters at low fields // Appl. Phys. Lett. 1997. V. 70. P. 3308.
  8. Bonard J.‑M., Maier F., Stockli T., Chatelain A., de Heer W.A., Salvetat J.‑P., Forro L. Field emission properties of multiwalled carbon nanotubes // Ultramicroscopy. 1998. V. 73. P. 7−15.
  9. Rakov EH.G. KHimija i primenenie uglerodnykh nanotrubok // Uspekhi khimii. 2001. T. 70. S. 934−973.
  10. Buchachenko A.L. Nanokhimija - prjamojj put k vysokim tekhnologijam novogo veka // Uspekhi khimii. 2003. T. 72. S. 419−437.
  11. Fowler R.H., Nordheim L. Electron emission in intense electric fields // Proc. R. Soc. Lond. A. 1928. V. 119. P. 173−181.
  12. Yumura M., Ohsima S., Uchida K., Tasaka Y., Kuruki Y., Ikazaki F., Saito Y., Uemura S. Synthesis and purification of multi-walled carbon nanotubes for field emitter applications // Diam. Relat. Mater. 1999. V. 8. P. 785−791.
  13. Sohn J.I., Lee J.I., Song Y.‑H., Choy S.‑Y., Cho R.‑I., Nam K.‑S. Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays // Appl. Phys. Lett. 2000. V. 78. P. 901−903.
  14. Dean K.A., Chalamala B.R. Current saturation mechanisms in carbon nanotube field emitters // Appl. Phys. Lett. 2000. V. 76. P. 375−377.
  15. Tomilin O.B., Murjumin E.E.Adsorbcija na grafenovojj poverkhnosti uglerodnykh nanotrubok i ikh ehnergeticheskijj spektr // FT. 2006. T. 48. S. 563−571.
  16. Margulis Vl.A., Muryumin E.E., Tomilin O.B. Theoretical study of atomic chemisorption on single-walled carbon nanotubes. Application of Anderson-Newns model // Physica B. 2004. V. 353. P. 314−323.
  17. Tomilin O.B., Stankevich I.V., Murjumin E.E., Lesin S.A., Syrkina N.P. Prizmaticheskie modifikacii odnostennykh uglerodnykh nanotrubok i ikh ehlektronnye svojjstva: reguljarnaja adsorbcija atomov ftora na grafenovykh poverkhnostjakh nanotrubok // FTT. 2011. T. 53. S. 187−193.
  18. Kim D.‑H., Lee H.‑R., Lee M.‑W., Lee J.‑H., Song Y.‑H., Lee J.‑G., Lee S.‑Y. Effect of the in situ Cs treatment on field emission of a multi-walled carbon nanotube // Chem. Phys. Lett. 2002. V. 355. P. 53−58.
  19. Bonard J.‑M., Stockli T., Maier F., de Heer W.A., Chatelain A., Salvetat J.‑P., Forro L. Field-emission-induced luminescence from carbon nanotubes // Phys. Rev. Lett. 1998. V. 81. P. 1441−1444.
  20. Obraztsov A.N., Volkov A.P., Pavlovsky I. Field emission from nanostructured carbon materials // Diamond Relat. Mater. 2000. V. 9. P. 1190−1195.
  21. Hiura H., Ebessen T.W., Fujita J., Tanigaki K., Takada T. Role of sp3 defect structures in graphite and carbon nanotubes // Nature. 1994. V. 367. P. 148−151.
  22. Cumings J., Zettl A., McCartney M.R., Spence J.C.H. Electron holography of field-emitting carbon nanotubes // Phys. Rev. Lett. 2002. V. 88. P. 056804 −1/4.
  23. Tomilin O.B., Stankevich I.V., Muryumin E.E., Rodionova T.V. Electronic conjugation of carbon atoms in spherical and cylindrical molecules // Carbon. 2012. V. 50. P. 5217−5225.
  24. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.J., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic structure system // J. Comput. Chem. 1993. V. 14. P. 1347−1363.