350 rub
Journal №3 for 2014 г.
Article in number:
Peculiarities of optical transmission in nano-sized metal-polymer structures with refraction and absorption indices close to zero
Keywords:
coherent optical transmission
nanostructure
polymethylmethacrylate
silver nanoparticle
surface optical waves
Authors:
К.К. Аltunin - Ph. D. (Phys.-Math.), Associate Professor, Ulyanovsk State Pedagogical University. Е-mail: teleportation@yandex.ru
Abstract:
We considered coherent optical transmission of nanostructured films with quasi-zero complex refractive index based on polymethylmethacrylate polymer matrix filled with silver metal nano-particles of a radius a = 4,5 nm and a = 12,5 nm. Within the framework of the electric dipole approach, the interaction between atoms in nanostructures is shown to lead to the increase of the intensity of their optical radiation. It is found that optical characteristics of nanostructured meta-materials with quasi-unit, quasi-zero, zero refractive indices can be calculated with the use of the integral equations method widely used in optics. It is shown that the surface optical waves may be excited on the interface of optical nanostructured meta-material with quasi-zero refractive index at various incidence angles of an external radiation.
Pages: 3-9
References
- Schurig D., Mock J.J., Justice B.J., Cummer S.A., Pendry J.B., Starr A.F., Smith D.R. Metamaterial electromagnetic cloak at microwave frequencies. // Science. 2006. V. 314. № 5801. R. 977−980.
- Alu A., Engheta N. Cloaking a sensor. // Phys. Rev. Lett. 2009. V. 102. № 23. 233901. R. 1−4.
- Pendry J.B. Negative refraction makes a perfect lens. // Phys. Rev. Lett. 2000. V. 85. № 18. R. 3966−3969.
- Alekseyev L.V., Narimanov E. Slow light and 3D imaging with non-magnetic negative index systems. // Opt. Express. 2006. V. 14. № 23. R. 11184−11193.
- Veselago V.G. The electrodynamics of substances with simultaneously negative values of e and m. // Sov. Phys. Usp. 1968. V. 10. № 4. R. 509−514.
- Yuan H.‑K., Chettiar U.K., Cai W., Kildishev A.V., Boltasseva A., Drachev V.P., Shalaev V.M. A negative permeability material at red light. // Opt. Express. 2007. V. 15. № 3. R. 1076−1083.
- Alu A., Silveirinha M.G., Salandrino A., Engheta N. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. // Phys. Rev. B. 2007. V. 75. № 15. 155410. R. 1−13.
- Silveirinha M., Engheta N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. // Phys. Rev. B. 2007. V. 75. № 7. 075119. R. 1−10.
- Navarro‑Cia M., Beruete M., Campillo I., Sorolla M. Enhanced lens by e and m near-zero metamaterial boosted by extraordinary optical transmission. // Phys. Rev. B. 2011. V. 83. № 11. 115112. R. 1−5.
- Tao Bo, Fu‑Li Li.Controlling thermal radiation by photonic quantum well structure with zero-averaged-refractive-index gap. // J. Opt. Soc. Am. B. 2009. V. 26. № 1. R. 96−100.
- Nguyen V.C., Chen L., Halterman K. Total transmission and total reflection by zero index metamaterials with defects. // Phys. Rev. Lett. 2010. V. 105. № 23. 233908. R. 1−4.
- Li J., Zhou L., Chan C.T., Sheng P. Photonic band gap from a stack of positive and negative index materials. // Phys. Rev. Lett. 2003. V. 90. № 8. 083901. R. 1−4.
- Silveirinha M.G., Engheta N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using epsilon-near-zero metamaterials. // Phys. Rev. B. 2007. V. 76. № 24. 245109. R. 1−17.
- Silveirinha M., Engheta N. Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. // Phys. Rev. Lett. 2006. V. 97. 157403. № 15. 157403. R. 1−4.
- Xi J.‑Q., Kim J.K., Schubert E.F. Silica nanorod-array films with very low refractive indices. // NanoLett. 2005. V. 5. R. 1385−1387.
- Altunin K.K., Gadomsky O.N. High-negative effective refractive index of silver nanoparticles system in nanocomposite films. // Opt. Commun. 2012. V. 285. R. 816−820.
- Gadomsky O.N., Altunin K.K., Ushakov N.M., Kosobudskii I.D., Podvigalkin V.Ya., Kulbatskii D.M. High-efficiency antireflection nanostructural optical coatings for solar cells. // Tech. Phys. 2010. V. 55. № 7. R. 996−1002.
- Altunin K.K. EHkstraordinarnoe opticheskoe propuskanie kompozitnykh nanostrukturnykh plenok s monosloem nanochastic serebra. // Nanomaterialy i nanostruktury - XXI vek. 2011. № 4. S. 3−14.
- Schroter U.andHeitmann D. Surface-plasmon-enhanced transmission through metallic gratings. // Phys. Rev. B. 1998. V. 58. № 23. R. 15419−15421.
- Popov E., Nevire M., Enoch S., andReinisch R. Theory of light transmission through subwavelength periodic hole arrays. // Phys. Rev. B. 2000. V. 62. № 23. R. 16100−16108.
- Martin‑Moreno L., Garcia‑Vidal F.J., Lezec H.J., Pellerin K.M., Thio T., Pendry J.B., andEbbesen T.W. Theory of extraordinary optical transmission through subwavelength hole arrays. // Phys. Rev. Lett. 2001. V. 86. № 6. R. 1114−1117.
- Bravo‑Abad J., Garcia‑Vidal F.J., andMartin‑Moreno L. Resonant transmission of light through finite chains of subwavelength holes in a metallic film. // Phys. Rev. Lett. 2004. V. 93. № 22. 227401. R. 1−4.
- Khanikaev A.B., Mousavi S.H., Shvets G., andKivshar Y.S. One-way extraordinary optical transmission and nonreciprocal spoof plasmons. // Phys. Rev. Lett. 2010. V. 105. № 12. 126804. R. 1−4.
- Mrejen M., Israel A., Taha H., Palchan M., andLewis A. Near-field characterization of extraordinary optical transmission in subwavelength aperture arrays. // Optics Express. 2007. V. 15. № 15. R. 9129−9138.
- Beruete M., Sorolla M., andCampillo I. Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays. // Optics Express. 2006. V. 14. № 12. R. 5445−5455.
- Zhou Y.‑S., Gu B.‑Y., Wang H.‑Y., andZhao L.‑M. Enhancement of the extraordinary optical transmission in a subwavelength metal slit dressed by a metal grating. // Phys. Rev. A. 2010. V. 81. № 3. 035803. R. 1−3.
- Mary A., Rodrigo S.G., Martin‑Moreno L., andGarcia‑Vidal F.J. Holey metal films: from extraordinary transmission to negative-index behavior. // Phys. Rev. B. 2009. V. 80. № 16. 165431. R. 1−8.
- Bykov I.V., Dorofeenko A.V., Ilyin A.S., Ryzhikov I.A., Sedova M.V., andVinogradov A.P. Extraordinary optical transmission through a random array of subwavelength holes. // Phys. Rev. B. 2008. V. 78. № 5. 054201. R. 1−5.
- Zhou Y.‑S., Gu B.‑Y., Lan S., andZhao L.‑M. Time-domain analysis of mechanism of plasmon-assisted extraordinary optical transmission // Phys. Rev. B. 2008. V. 78. № 8. 081404. R. 1−4.
- Gadomskijj O.N., Altunin K.K., Ushakov N.M. Idealnoe opticheskoe prosvetlenie kompozitnykh plenok, aktivirovannykh sfericheskimi nanochasticami. // Pisma v ZHEHTF. 2009. T. 90. № 4. S. 273−278.
- Gadomsky O.N., Altunin K.K., Stepin S.N., Katnov V.E., Rusin A.A., Pereskokov E.A. Near-field effect in composite nanomaterials with a quasi-zero refractive index. // Opt. Commun. 2014. V. 315. R. 286−294.
- JArmolenko M.A., Rogachev A.A., Rogachev A.V., Luchnikov P.A., Gorbachev D.L.Tonkoplenochnye kompozity na osnove poliehtilena s vkljucheniem nanochastic medi // Izvestija VUZov. «Fizika». 2013. T. 56. № 1/2., S. 147−150.
- JArmolenko M.A., Rogachev A.A., Luchnikov P.A., Rogachev A.V. Struktura vakuumnykh kompozicionnykh pokrytijj polimer − serebro, osazhdennykh pri ehlektronno-luchevom raspylenii komponentov // Izvestija VUZov. «Fizika». 2013. T. 56. № 1/2. S. 276−279.
- JArmolenko M.A., Luchnikov P.A., Rogachev A.A. Poluchenie plenochnykh kompozitov s nanochasticami serebra na osnove limonnojj kisloty // Nanomaterialy i nanostruktury - KHKHI vek. 2014. T. 5. № 1. S. 36−41.
- JArmolenko M.A., Luchnikov P.A., Rogachev A.A. Plazmonnoe pogloshhenie v nanokompozitakh na osnove stearinovojj kisloty s nanochasticami serebra // Nanomaterialy i nanostruktury - KHKHI vek. 2014. T. 5. № 2. S. 21−27.
- Luchnikov P.A., JArmolenko M.A., Rogachev A.A., Luchnikov A.P. Segregacija nanochastic serebra v sloistykh metall-polimernykh geterostrukturakh pri termicheskojj obrabotke / EHlektronnaja tekhnika. Serija 2. Poluprovodnikovye pribory. 2014. № 2(233). S. 63−72.