350 rub
Journal №2 for 2014 г.
Article in number:
Nano-engineering in long wavelength wafer-fused VCSEL fabrication for microwave photonics
Authors:
M. Belkin - Sc.Dr. (Eng.), Professor, Moscow State Technical University of Radio-Engineering, Electronics and Automation (MIREA), Russia. E-mail: belkin@mirea.ru
A. Sigov - Academician of Russian Academy of Sciences, President of Moscow State Technical University of Radio-Engineering, Electronics and Automation (MIREA), Russia
D. Ellafi - Sc.Dr., École Nationale D-ingenieur de Tunis, Republic of Tunissia
V. Iakovlev - Sc.Dr., Senior Research Scientist, École Polytechnique Fédérale de Lausanne, Switzerland
E. Kapon - Sc.Dr., Professor, École Polytechnique Fédérale de Lausanne, Switzerland
Abstract:
We address the challenge of increasing the direct modulation bandwidth for practical applications of next generation microwave photonics telecom and radar systems using long-wavelength vertical cavity surface emitting lasers (LW-VCSELs). Several demonstrations of new concepts of cost- and power effective LW-VCSEL-based microwave photonics devices with competitive features are presented and discussed.The dramatic impact of the nanometer accuracy in fabrication of the VCSEL on the static and dynamic performance,as well as the extraction of internal VCSEL parameters by performing digital etching with atomic resolution is demonstrated.
Pages: 33-46
References

  1. Seeds A. J., Williams K. J. Microwave Photonics // IEEE Journal of Lightwave Technology, 2006. V. 24, No 12. P. 4628-4641.
  2. Kapon E., Sirbu A. Long-wavelength VCSELs: Power-efficient answer // Nature Photonics, 2009. V. 3. Р. 27-29.
  3. Sirbu A., Caliman A., Mereuta A., Iakovlev V., Suruceanu G., Kapon E. Recent progress in wafer-fused VCSELs emitting in the 1550-nm band // ICTON 2011, Mo.C5.1.
  4. http://www.lightwaveonline.com/articles/print/volume-28/issue-6/technology/long-wavelength-vcsel-technology-improves.html.
  5. Yao J. Microwave Photonics // IEEE Journal of Lightwave Technology,2009. V. 27. № 3. Р. 314.
  6. Capmany J., Novak D. Microwave photonics combines two worlds // Nature Photonics, 2007.V. 1.№  1.P. 319-330.
  7. Koyama A.F. Recent advances of VCSEL photonics //IEEE Journal of Lightwave Technology, 2006.V. 24.№  12.P. 4502-4513.
  8. Jalali B., Paniccia M., Reed G. Silicon Photonics // IEEE Microwave Magazine, 2006. V. 7. No 3. P. 58-68.
  9. Subrahmanyam P. B., Zhou Y., Chrostowski L., and Chang-Hasnain C. J. VCSEL tolerance to optical feedback // Electronics Letters, 2006. V. 41.No 21.
  10. Chrostowski L., Chang C-H., Chang-Hasnain C.J. Enhancement of dynamic range in 1.55-um VCSELs using injection locking // IEEE Photonics Technology Letters, 2003. V. 15.№  4. P. 498-500.
  11. Miller D.A.B. Device Requirements for Optical Interconnects to Silicon Chips // Proceedings of the IEEE, 2009. V. 97.№ 7.P. 1166-1185.
  12. Maleki L. Recent Progress in Opto-Electronic Oscillator // Microwave Photonics International Topical Meeting, 2005. P. 81-84.
  13. Belkin M. E., Loparev A., et al. A Tunable RF-Band Optoelectronic Oscillator and OE-CAD Model for its Simulation // Microwave and Optical Technology Letters, 2011. V. 53. № 11. P. 2474-2477.
  14. Belkin M.E., Loparev A.V. A Microwave Optoelectronic Oscillator: Mach-Zehnder Modulator or VCSEL Based Layout Comparison // PIERS Proceeding. Moscow. 2012.P. 1138-1142.
  15. http://www.vpiphotonics.com/TMOpticalSystems.php.
  16. Cabon B. Microwave Photonics Mixing // Transactions D: Computer Science & Engineering and Electrical Eng., 2010. V. 17. № 2. P.149-162.
  17. Constant S. B., Le Guennec Y., Maury G., Corrao N., Cabon B. Low-cost all-optical up-conversion of digital radio signals using directly modulated 1550-nm emitting VCSEL. // IEEE Photonics Technology Letters, 2008. V. 20. № 2. P. 120-122.
  18. Belkin M.E., Belkin L.M., et al. Microwave-Band Optoelectronic Frequency Converters Based on Long Wavelength VCSELs // IEEE COMCAS, Tel Aviv. 7-9 Nov. 2011. P. 1-6.
  19. Belkin. L. Microelectronic and optoelectronic design principles of microwave semiconductor frequency converters // PhD dissertation. 2012.  MIREA. Moscow, RF (in Russian)\
  20. Hemery E., Chusseau L., Lourtioz J.-M. Dynamic Behaviours of Semiconductor Lasers under Strong Sinusoidal Current Modulation: Modeling and Experiments at 1.3 µm // IEEE Journal of Quantum Electronics, 1990.V. 26.№ 4. P. 633-641.
  21. Ortsiefer M., et al. Low-resistance InGa(Al)As tunnel junctions for long wavelength vertical-cavity surface-emitting lasers //Japanese Journal of Applied Physics, 2000. V. 39. P. 1727-1729.
  22. Menon P.S., Kumarajah K., Bais B., et al. Peak power and wavelength optimization of a double-fused LW-VCSEL // IEEE International Conference on Semiconductor Electronics (ICSE). 2010. P. 365-369.
  23. Coldren L.A., Corzine S.W. Diode Lasers and Photonic Integrated Circuits. Wiley, New York. 1995.
  24. Bimberg D. Quantum dot based nanophotonics and nanoelectronics // Electronics Letters, 2008. V. 44. № 33.
  25. Krestnikov, Ledentsov N.N., Hoffmann A., Bimberg D. Arrays of two-dimensional islands formed by submonolayer insertions: growth, properties, devices // Physica Status Solidi (a), 2008. V. 183. № 2. P. 207-233.
  26. Willatzen M., Takahashi T., Arakawa Y. Nonlinear gain effects due to carrier heating and spectral hole burning in strained-quantum-well lasers // IEEE Photonics Technology Letters, 1992.V. 4. № 7. P. 682.
  27. O-Reilly E.P., Adams A.R. Band-structure engineering in strained semiconductor lasers // IEEE Journal of Quantum Electronics, 1994. V. 30. № 2. P. 366-379.
  28. Weisser S., Larkins E.C., Czotscher K., et al. Damping limited modulation bandwidths up to 40 GHz in undoped short cavity In(0.35)Ga(0.65)As-GaAs multiple quantum well lasers // IEEE Photonics Technology Letters, 1996. V. 8. № 5. P. 608-610.
  29. Zhao B., Chen T.R., Yariv A. The extra differential gain enhancement inmultiple-quantum-well lasers // IEEE Photonics Technology Letters, 1992. V. 4. № 2. P. 124.
  30. Aggerstam T., Von Würtemberg R.M., Runnström C., Choumas E. Large aperture 850 nm oxide confined VCSELs for 10 Gb/s data communication // in Proc. SPIE. 2002. V. 4649. P. 19-24.
  31. Westbergh P., Gustavsson J. S., Haglund Å., et al. High speed, low current density 850 nm VCSELs // IEEE Journal of Selected Topics on Quantum Electronics, 2009. V. 15. № 3. P. 694-703.
  32. Chang Y.-C., Wang C. S., ColdrenL. A. High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation // Electronics Letters, 2007. V. 43.№  19. P.1022-1023.
  33. Westbergh P., Gustavsson J. S., Haglund Å., at el. 32 Gbit/s multimode fiber transmission using high speed, low current density 850 nm VCSEL // Electronics Letters, 2009. V. 45.№  7, P. 366-368.
  34. Mircea A., Caliman A.,  Iakovlev V., et al. Cavity Mode-Gain Peak Tradeoff for 1320-nm Wafer-Fused VCSELs With 3-mW Single-Mode Emission Power and 10-Gb/s Modulation Speed Up to 70° C // IEEE Photonics Technology Letters, 2007. V. 19. P. 121-123.
  35. Hadley G.R. Effective index model for vertical-cavity surface-emitting lasers // Optics Letters, 1995. V. 20. P. 1483-1485.
  36. De Salvo G.C., Bozada C.A., Ebel J., et al. Wet Chemical Digital Etching of GaAs at Room Temperature // Journal of Electrochemical Society. 1996. V. 143. № 11.
  37. Corzine S.W., Geels R.S., Scott J.W., et al. Design of Fabry-Perot Surface-Emitting Lasers with a Periodic Gain Structure // IEEE Journal of Quantum Electronics, 1989. V. 25. № 6.
  38. Wolfe C.-M., Holonyak N., Stillman G.E. Physical Properties of Semiconductors - Englewood Cliffs. NJ: Prentice-Hall, 1989.