350 rub
Journal №4 for 2013 г.
Article in number:
Increase of heat capacity level in nanostructured palladiuminfluenced by hydrogen
Authors:
I.S. Zamulin - Post-graduate Student, Katanov Khakass State University, Abakan. E-mail: zamulin_ivan@mail.ru
S.L. Gafner - Dr.Sc. (Phys.-Math.), Professor, Katanov Khakass State University, Abakan. E-mail: sgafner@khsu.ru sgafner@rambler
L.V. Redel - Ph.D. (Phys.-Math.), Associate Professor, Katanov Khakass State University, Abakan. Е-mail: lredel@khsu.ru
Yu.Ya. Gafner - Dr.Sc. (Phys.-Math.), Professor, Head of Department, Katanov Khakass State University, Abakan. Е-mail: ygafner@khsu.ru
Abstract:
By molecular dynamics method using various tight-binding potentials we have investigated the heat capacity of ideal FCC palladium clusters of 6 nm in diameter in the temperature range from 150 to 300 K. The value obtained for palladium nanoparticles at 150 K exceeds that of the corresponding bulk material by 12-16 %. The nature of the significant overestimation of the heat capacity of compactificated nanomaterials relates to their disordered state, or a significant content of various kinds of impurities, mainly hydrogen.
Pages: 3-8
References

  1. Gusev A.I. Nanomaterialy', nanostruktury', nanotexnologii. M.: Fizmatlit. 2007. 416 s.
  2. Novotny V., Meincke P.P.M., Watson J.H.P. Effect of size and surface on the specific heat of small lead particles // Phys. Rev. Lett. 1972. V. 28. № 14. R. 901-903.
  3. Novotny V., Meincke P.P.M. Thermodynamic lattice and electronic properties of small metal particles // Phys. Rev. B. 1973. V. 8. № 9. R. 4186-4199.
  4. Comsa G.H., Heitkamp D., Rade H.S. Effect of size on the vibrational specific heat of ultrafine palladium particles // Solid State Commun. 1977. V. 24. R. 547-550.
  5. Goll G., Lohneyen H. Specific heat of nanocrystalline and colloidal noble metals at low temperatures // Nanostruct. Matter. 1995. V. 6. R. 559-562.
  6. Rupp J., Birringer R. Enhanced specific-heat-capacity (cp) measurements (150(300 K) of nanometer-sized crystalline materials // Phys. Rev. B. 1987. № 36. R. 7888-7890.
  7. Gafner S.L., Redel L.V., Gafner Yu.Ya., Samsonov V.M. Peculiar features of heat capacity for Cu and Ni nanoclusters // Journal of Nanoparticle Research. 2011. № 13. R. 6419-6425.
  8. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys // Phys. Rev. B. 1993. V. 48. R. 22-33.
  9. Karolewski M.A. Tight-Binding Potentials for Sputtering Simulations with FCC and BCC Metals // Radiation Effects and Defects in Solid. 2001. V. 153. R. 239-255.
  10. Mottet C., Goniakowski J., Baletto F., Ferrando R. and Treglia G. Modeling free and supported metallic nanoclusters: structure and dynamics // Phase Transitions. 2004. V. 77. №. 1-2. R. 101-113.
  11. Gafner S.L., Redel' L.V., Gafner Ju.Ja. K voprosu o formirovanii strukturny'x modifikaczij v nanoklasterax Ni // Fizika metallov i metallovedenie. 2007. T. 104. № 2. S. 189-195.
  12. Gafner S.L., Redel' L.V., Gafner Ju.Ja. Modelirovanie proczessov strukturoobrazovaniya nanoklasterov medi v ramkax potencziala sil'noj svyazi // ZhE'TF. 2009. T. 135. N 5. S. 899-916.
  13. Mutschele T., Kirchheim R. Segregation and diffusion of hydrogen in grain boundaries of palladium // Scripta Met. 1987. V. 21. № 2. R. 135-140.
  14. Stuhr U., Wipf H., Udovic T.J. Inelastic neutron scattering study of hydrogen in nanocrystalline Pd // Nanostruct. Matter. 1995. V. 6. № 5-8. R. 555-558.
  15. Eastmen J.A., Thompson L.J., Kestel B.J. Narrowing of the palladium-hydrogen miscibility gap in nanocrystalline palladium // Phys. Rev. B. 1993. V. 48. № 1. R. 84-92.Gafner S.L., Redel' L.V., Gafner Ju.Ja. Modelirovanie teploemkosti klasterov nikelya i medi metodom molekulyarnoj dinamiki: vliyanie formy' i razmera // ZhE'TF. 2012. T. 141. № 3. S. 488-501.