350 rub
Journal №3 for 2013 г.
Article in number:
The radiative properties of columnar semiconductor nanostructures
Authors:
E.D. Mishina, N.E. Sherstyuk, N.A. Ilyin, S.D. Lavrov, A.M. Buryakov, A.N. Belov, O.V. Pyatilova, Y. Nazarkina, M.V. Silibin, S.A. Gavrilov
Abstract:
Presently there is a strong trend toward miniaturization of photonic devices and circuits, including radiation sources, which enables the creation and integration monolithic photonic (optical) integrated circuits, increases the speed and reduce power consumption. The main structures, which are developed on the basis of miniaturized radiation sources are semiconductor nanostructures, and radiation sources are both on the basis of individual nanoparticles, and with the use of arrays of ordered nanostructures and metamaterials. On the basis of nanowires, for example, are made fibers, nanolasers converters to the second harmonic light detectors. In this paper ordered columnar nanostructures of semiconductor oxides and sulphides of metals of the second group have been studied by two-photon microscopy- spectroscopy method. In the "sore-shell" Cd-containing oxides and sulfides luminescence enhancement has been found arising due to plasmonic effects. In zinc oxide nanostructures a method is proposed for investigating the distribution of impurities on the cross section and length of the individual nanorod. The developed materials and techniques can be used in creation of semiconductor sensors and solar cells.
Pages: 44-53
References

  1. Yan R., Gargas D., Yang P. Nanowire photonics// Nature Photonics. 2009. V. 3. P. 569.
  2. Zhou H., Wissinger M., Fallert J., Hauschild R., Stelzl F., KlingshirnC., KaltH. Ordered, uniform-sized ZnOnanolaser arrays // Appl. Phys. Lett. 2007. V. 91. P. 181112.
  3. Zhang C., Zhang F., Xia T., Kumar N., Hahm J., Liu J., Wang Z. L., Xu J. Low-threshold two photon-pumped ZnO nanowire lasers // Opt. Express.2009. V. 17. P. 7893(7900.
  4. Choi H.-J. et al, Self-Organized GaN Quantum Wire UV Lasers // J. Phys. Chem. 2003. V. 107. P. 8721.
  5. Barnes W.L., Dereux A., Ebbesen T.W. Surface Plasmon subwavelength optics // Nature.2003. V. 424. P. 824.
  6. Atwater H. A., Polman A.Plasmonics for improved photovoltaic devices. // Nature Mater. 2010. V. 9, P. 205-213.
  7. Battaglia C., Escarreґ J., Soderstrom K., Charriere M., Despeisse M., Haug F.-J., Ballif C.Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells // Nature Photonics. 2011. V. 5. P. 535.
  8. Yan R., Gargas D., Yang P., Nanowire photonics // Nature Photonics 2009.V. 3. P. 569.
  9. Chu S., Wang G., Zhou W., Lin Y., Chernyak L., Zhao J., Kong J., Li L., Ren J., Liu J., Electrically pumped waveguide lasing from ZnO nanowires // Nature Nanotechnology. 2011. V. 6. P. 606.
  10. Noginov M.A., et al. Demonstration of a spaser-based nanolaser // Nature. 2009. V. 460. P. 1110.
  11. Tandaechanurat A., Ishida S., Guimard D., Nomura M., Iwamoto S., Arakawa Y. Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap // Nature Photonics. 2011. V. 5. P. 91.
  12. Matsuo S., Shinya A., Kakitsuka T., Nozaki K., Segawa T., Sato T., Kawaguchi Y., Notomi M. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted // Nature Photonics. 2010. V. 4. P. 648.
  13. Nozaki K., Tanabe T., Shinya A., Matsuo S., Sato T., Taniyama H., Notomi M. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity // Nature Photonics. 2010. V. 4. P. 477.
  14. Cong G. W., Akimoto R., Akita K., Hasama T.,Ishikawa H. Low-saturation- energy-driven ultrafast all-optical switching operation in (CdS/ZnSe)/BeTeintersubband transition // Opt. Express.2007. V. 15. P. 12123.
  15. Xu S., Qin Y., Xu C., Wei Y., Yang R., Wang Z. L., Self-powered nanowire devices // Nature Nanotechnology. 2010. V. 5. P. 366.
  16. Belov A.N., Gavrilov S.A., Shevyakov V.I. Osobennosti polu­cheniya nanostrukturirovannogo anodnogo oksida alyuminiya // Rossijskie nanotexnologii. 2006. T. 1. № 1(2. C. 223.
  17. Belov A.N., Gavrilov S.A., Shevyakov V.I., Redichev  E.N. Pulsed electrodeposition of metals into porous anodic alumina// Appl. Phys. A. 2011. V. 102. № 1. P. 219(223.
  18. Du Y., Cai W.L., Mo C.M., Chen J., Zhang L.D., Zhu X.G. Preparation and photoluminescence of alumina membranes with ordered pore arrays // Appl. Phys. Lett. 1999. V. 74. P. 2951.
  19. Li Y., Li G. H., Meng G. W., Zhang L. D., Phillipp F. Photoluminescence and optical absorption caused by the F+ centres in anodic alumina membranes // J. Phys.: Condens. Matter 2001. V. 13. P. 2691.
  20. Gao T., Meng G.W.,  Zhang L.D.Blue luminescence in porous anodic alumina films: the role of the oxalic impurities. // J. Phys.: Condens. Matter. 2003. V. 15. P. 2071.
  21. Xu W.L., Zheng M.J., Wu S., Shen W.Z. Effects of high-temperature annealing on structural and optical properties of highly ordered porous alumina membranes // Appl. Phys. Lett. 2004. V. 85. P. 4364.
  22. Zeman E.J., Schatz G.CAn accurate electromagnetic theory study of surface enhancement factors for Ag,Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd // J. Phys. Chem. 1987. V. 91. P. 634.
  23. EkimovA.I., Efros A1.L.Onushchenko A.A.Quantum size effect in semiconductor microcrystals // Solid State Communications.1985. V. 56. № 11. P.921.
  24. Huang M.H., Wu Y., Feick H., Tran N., Weber E., P. Yang Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport // Adv. Mater. 2001. V. 13. № 2.
  25. KleinmanD. A., AshkinA., BoydG. D. Second-Harmonic Generation of Light by Focused Laser Beams // Phys, Rev. 1966. V.145. № 1. P. 338.