350 rub
Journal №3 for 2013 г.
Article in number:
On the problem of technological applying of metal nanoparticles under the temperature change
Authors:
D.N. Sokolov - Postgraduate student of department of the theoretical physics, Tver State University. E-mail: dnsokolov@mail.ru
N.Yu. Sdobnyakov - Associate professor of department of the theoretical physics, Tver State University. E-mail: nsdobnyakov@mail.ru
A.Yu. Kolosov - Postgraduate student of department of the theoretical physics, Tver State University. E-mail: kolosov-au@yandex.ru
N.V. Novozhilov - Postgraduate student of department of the theoretical physics, Tver State University. E-mail: nnowhereman@gmail.com
A.S. Antonov - Postgraduate student of department of the theoretical physics, Tver State University. E-mail: s014451@mail.ru
Abstract:
The paper deals with the problem of functioning elements consisting of nanoparticles in normal operation mode. The size dependence of the relative decreasing the melting temperature and the specific total surface energy for gold, copper and aluminum nanoclusters have been calculated. The investigation of the thermodynamic characteristics finds its practical application in the processes like spontaneous coalescence, process nanosoldering and affect the conditions of mechanical stability of the nanoclusters. As an example the coalescence of gold nanoparticles has been described. It was found that in some cases the nanoparticles coalescence could happen under much lower temperatures than the temperature of crystal-liquid phase transition for the current size of nanoparticles. Moreover, the coalescence doesn-t happen at all at certain distances between nanoparticles of an initial configuration. The evolution of the neck formed at the coalescence of different-sized particles has been investigated. In addition simulation for evaluation of the interaction between probe tip (copper) - sample (gold) system in the thermal expansion as a function of distance between them has been carried out. It has been found that the thermal expansion of the probe tip can reach values comparable with the width of the tunneling gap and the potential for a cascade process of thermal expansion of the probe tip that results in contact between the probe and the sample surface exists.
Pages: 8-14
References

  1. Gupta R.P. Lattice relaxation at a metal surface // Physical Review B. 1981. V. 23. № 12. P. 6265-6270.
  2. Wilson N.T., Johnson R.L. A theoretical study of atom ordering in copper-gold nanoalloy clusters // Journal of Materials Chemistry. 2002. V. 12. P. 2913-2922.
  3. Zherenkova L.V., Komarov P.V., Xalatur P.G. Modelirovanie proczessa metallizaczii fragmenta molekuly' dezoribonukleinovoj kisloty' nanochasticzami zolota // Kolloidny'j zhurnal. 2007. T. 69. № 6. S. 753-765.
  4. Metropolis N., Rosenbluth A.W., Rosenbluth A.W., Teller A.N., Teller E. Equation of State Calculations by Fast Computing Machines // Journal of Chemical Physics. 1953. V. 21. № 16. P. 1087-1092.
  5. Fizicheskie velichiny'. Spravochnik. M.: E'nergiya. 1991. 1232 c.
  6. Samsonov V.M., Bazulev A.N., Sdobnyakov N.Yu. Surface Tension in Small Droplets and Nanocrystals // Journal of Physical Chemistry. 2003. V. 77. Suppl. 1. P. 158-161.
  7. Xokonov X.B. Metody' izmereniya poverxnostnoj e'nergii i natyazheniya metallov i splavov v tverdom sostoyanii. v kn.: Poverxnostny'e yavleniya v rasplavax i voznikayushhix iz nix tverdy'x fazax. Kishinev: Shtiincza. 1974. S. 190.
  8. Magomedov M.N. O zavisimosti poverxnostnoj e'nergii ot razmera i formy' nanokristalla. FTT. 2004. T 46. № 5. S. 928-937.
  9. Hendy S., Brown S.A., Hyslop M. Coalescence of nanoscale metal clusters: Molecular-dynamics study // Physical Review B. 2003. V. 68. P. 241403-1-241403-4.
  10. Nanotexnologiya v e'lektronike / pod red. Ju.A. Chaply'gina. M.: Texnosfera. 2005. 448 s.
  11. Samsonov V.M., Sdobnyakov N.Yu. A thermodynamic approach to mechanical stability of nanosized particles // Central European Journal of Physics. 2003. V. 1. № 2. P. 344-354.
  12. Sokolov D.N., Komarov P.V., Sdobnyakov N.Ju. Issledovanie termodinamicheskix xarakteristik nanoklasterov zolota s ispol'zovaniem mnogochastichnogo potencziala Gupta // Fizika metallov i metallovedenie. 2011. T. 111. № 1. S. 15-22.
  13. Sdobnyakov N.Ju., Sokolov D.N., Samsonov V.M., Koma-rov P.V. Issledovanie gisterezisa plavleniya i kristallizaczii nanoklasterov zolota s ispol'zovaniem mnogochastichnogo potencziala Gupta. // Metally'. 2012. № 2. S. 48-54.
  14. Arcidiacono N.R., Bieri S., Poulikakos D., Grigoropoulos C.P. On the coalescence of gold nanoparticles. // Science direct International Journal of Multiphase Flow. 2004. V. 30. P. 979-994.
  15. Rabinovich R.M. Teoreticheskoe issledovanie izmeneniya dliny' ostriya STM vsledstvie razogreva e'nergiej Nottingama // Tezisy' VNKSF-7. SPb: SPbGU. 2001. S 242.
  16. Vladimirov G.G., Drozdov A.V., Rezanov A.N. Vliyanie fiziko-ximicheskix svojstv materiala ostriya na modifikacziyu poverxnosti impul'som napryazheniya v skaniruyushhem tunnel'nom mikroskope // Pis'ma v ZhTF. 2000. T. 26. Vy'p. 9. S. 36-40.
  17. Vladimirov G.G., Drozdov A.V., Baskin L.M. O mexanizme modifikaczii poverxnosti v STM pod vozdejstviem impul'sa napryazheniya // Pis'ma v ZhTF. 1995. T. 21. Vy'p. 11. S. 6-71.
  18. Baskin L.M., Drozdov A.V., Vladimirov G.G. The thermal expansion as a possible mechanism of nanofabrication // Surface Science. 1996. V. 369. P. 385-392.
  19. Vladimirov G.G., Drozdov A.V. Surface modification by voltage pulse in a scanning tunnelling microscope // Journal of Vacuum Science Technology B. 1997. V. 15. № 2. P. 482-488
  20. Chajka A.N., Nazin S.S., Semenov V.N. i dr. Ispol'zovanie monokristallicheskogo vol'frama dlya sozdaniya vy'sokorazreshayushhix zondov STM s kontroliruemoj strukturoj // Metally'. 2011. № 4. S. 3-10.
  21. Wilson N.T., Johnson R.L. A theoretical study of atom ordering in copper-gold nanoalloy clusters // Journal of Materials Chemistry. 2002. V. 12. P. 2913-2922.
  22. Gupta R.P. Lattice relaxation at a metal surface // Physical Review B. 1981. V. 23. № 12. P. 6265-6270.
  23. Sdobnyakov N.Ju., Antonov A.S., Sokolov D.N., Voronova E.A., Mixajlova O.V. Izmerenie vol't-amperny'x xarakteristik tunnel'nogo kontakta vol'fram-zoloto // Nanotexnika. 2012. № 2(30). S. 16-19.
  24. Kornilov O.A. Izuchenie vliyaniya formy' tunnel'nogo bar'era na tunnel'ny'j tok v STM // Tezisy' VNKSF-7. SPb: SPbGU, 2001. S. 187.