350 rub
Journal №4 for 2011 г.
Article in number:
Magnetic and relaxation properties ferromagnetic of multinanolayer composite - composite∕semiconductor films
Authors:
L.N. Kotov, V.K. Turkov, V.S. Vlasov, A.V. Golov, Yu.E. Kalinin, A.V. Sitnikov
Abstract:
Magnetic resonance and relaxation properties of composite-semiconductor multilayer films are investigated by ferromagnetic resonance (FMR) method. The multilayer films with {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si]}120 and {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si:H]}120 compositions was obtained by ion-beam evaporation method in argon atmosphere and with addition of hydrogen. FMR characteristics of single-layered composite and composite-composite multilayered films are resulted and obtained. The dependencies of specific electric resistance, average magnetization function and width of FMR line on metal (magnetic) phase concentration x in composite layers and nanolayers thickness of composite-composite multilayer films of series C and composite-semiconductor multilayered films series D, E are obtained. The average magnetization function determines demagnetization and induced anisotropy fields. It is revealed that FMR characteristic dependences on x and thickness of layers for composite films of series A and multilayered films (composite-composite) of series C have similar behavior. The shift of the maximum on dependence of width of line on х for multilayered films of C series comparing with maximum ΔH(x) for single-layered films of A series can be caused by roughness on layers bound. For multilayer films of series D and E wide maxima on dependences ΔH(x) which correlate with layers thickness dependence d(x) are observed. Occurrence of maxima is coupled with maximum of demagnetized fields and minimum of electrons exchange through semiconductor layer among magnetic granules in the area of the maximum of d(x). It results in general broadening of FMR line and maximum of ΔH(x). Shift of average magnetization function values towards bigger values for all films series at nitrogen cooling and increase of concentration x is coupled with increasing of saturation magnetization and degree of exchange interaction between composite layers granules. Hence FMR characteristics depend on magnetic interaction between magnetic granules in composite layers and between layers, thickness of composite and semiconductor layers and topology of nanogranules in composite layers. The formula describing exchange interaction of conductivity electrons between composite layers separated by a semiconductor layer was received. The films of series C for which the width of FMR line is relative narrow can be applied in manufacturing of the information processing microwave devices. The films of series E with wider FMR line can be used as the thin absorbing microwave coverings
Pages: 27-34
References
  1. Fan W.J., Qiu X.P., Shi Z., Zhou S.M., Cheng Z.H. Correlation between isotropic ferromagnetic resonance field shift and rotatable anisotropy in polycrystalline NiFe/FeMn bilayers // Thin Solid Films. 2010. V  518. P. 2175−2178.
  2. Ortega D., Garitaonandia J.S., Barrera-Solano C., Dominguez M. Thermal evolution of the ferromagnetic resonance in Fe2O3/SiO2 nanocomposites for magneto-optical sensors // Sensors and Actuators A. 2008. V. 142. P. 554−560.
  3. De Cos D., Garcia-Arribas A., Barandiaran J.M. Ferromagnetic resonance in gigahertz magneto-impedance of multilayer systems // Journal of Magnetism and Magnetic Materials. 2006. V. 304. P. 218−221.
  4. Gomez J., Weston J.L., Butera A. Angular dependence of the ferromagnetic resonance spectrum in continuous/heterogeneous multilayers // Journal of Magnetism and Magnetic Materials. 2008. V. 320. P. e239−e241.
  5. Wang Ri-Xing, He Peng-Bin, Liu Quan-Hui, Li Zai-Dong, Pan An-Lian, Zou Bing-Suo, Wang Yan-Guo. Tilted spin torque-driven ferromagnetic resonance in a perpendicular-analyzer magnetic trilayer // Journal of Magnetism and Magnetic Materials. 2010. V. 322. P. 2264−2267.
  6. Kotov L.N., Turkov V.K., Vlasov V.S., Kalinin Yu.E., Sitnikov A.V. Relaxation of magnetization in thin composite (Co45Fe45Zr10)x(Al2O3)100-x films // Material Science and Engineering. 2006. V. 442. P. 352−355.
  7. Kotov L.N., Turkov V.K., Vlasov V.S., Kalinin Yu.E., Sitnikov A.V., Asadullin F.F. Magnetic and relaxation properties of thin composite films (Co45Fe45Zr10)x(Al2O3)1- x // Journal of Magnetism and Magnetic Materials. 2007. V. 316. P. e20−e22.
  8. Коtоv L.N., Efimets Yu.Yu., Vlasov V.S., Petrakov A.P., Turkov V.K., Kalinin Yu.E., Sitnikov A.V. Magnetic and relaxation properties of (Co45Fe45Zr10)x(Al2O3) 1-x thin films // Advanced Materials Research. 2008. V. 47−50. P. 706−709.
  9. Kravets V. G., Bozec D., Matthew J. A. D., Thompson S. M., Menard H., Horn A. B., Kravets A. F. Correlation between the magnetorefractive effect, giant magnetoresistance, and optical properties of Co-Ag granular magnetic films // Physical Review B. 2002. V. 65. P. 054415-1−054415-9.
  10. Kravets V.G., Poperenko L.V., Yurgelevych I.V., Pogorily A.M., Kravets A.F. Optical and magneto-optical properties and magnetorefractive effect in metal-insulator CoFe-Al2O3 granular films // Journal of Applied Physics. 2005. V. 98. P. 043705-1−043705-7.
  11. Wang J., Zou W., Lu Zhi., Lu Zho., Liu X., Xu J., Lin Y., Lv L., Zhang F., Du Y. Anomalous Hall effect and magnetoresistance of (FexSn1−x)1−y(SiO2)y films // Journal of Physics D: Applied Physics. 2007. V. 40. P. 2425−2429.
  12. Pettiford C.I., Zeltser A., Yoon S.D., Harri V.G., Vittoria C., Sun N.X. Magnetic and microwave properties of CoFe/PtMn/CoFe multilayer films // Journal of Applied Physics. 2006. V. 99. P. 08C901-1−08C901-3.
  13. Rubinstein M., Das B.N., Koon N.C., Chrisey B.D., Horwitz J. Ferromagnetic-resonance studies of granular giant-magnetoresistive materials // Physical Review B. 1994. V. 50. P. 184−193.
  14. Dubowick J. Shape anisotropy of magnetic heterostructures // Physical Review. B. 1996. V. 54. P. 1088−1091.
  15. Butera A., Zhou J. N., Barnard J. A. Ferromagnetic resonance in as-deposited and annealed Fe-SiO2 heterogeneous thin films // Physical Review B. 1999. V. 60. P. 12270−12278.
  16. Луцев Л.В. Спиновые возбуждения в гранулированных структурах с ферромагнитными наночастицами // Физика Твердого Тела. 2002. Т. 44. С. 97−105.
  17. Антонец И.В., Котов Л.Н., Некипелов С.В., Голубев Е.А. Особенности наноструктуры и удельной проводимости тонких пленок различных металлов // Журнал Технической Физики. 2004. Т. 74. С. 24−27.