350 rub
Journal №4 for 2011 г.
Article in number:
Extraordinary optical tramsmission of composite nanostriuctured films with a monolayer of silver nanoparticles
Authors:
K.K. Altunin
Abstract:
In connection with the development of new technologies of nanomaterials has become an urgent task of the experimental study of optical properties of new nanomaterials, as well as an adequate theoretical model to describe the optical processes in nanostructured coatings of new nanomaterials. We describe the new nanocomposite nanomaterial in the form of metal-polymer films with a thickness of 2 nm to 100 microns with a quasi-zero average of complex refractive index. The application of these films, for example, in solar cells leads to a multiple enhancement their efficiency in excess of world figures. New nanomaterials with small values of the complex refractive index are directly related to the problem clearing the surfaces of various optical media. The coherent optical transmission of nanostructures with quasi-zero complex refractive index of nanocomposite materials doped with silver nanoparticles. The optical properties of new nanocomposite materials with the quasi-zero refractive index and the absorption coefficient, as well as films made of these nanomaterials on various substrates. It is shown that the films, synthesized from (PMMA+Ag) nanomaterials, are high-efficiency antireflective coatings in the optical wavelength range from 420 to 1055 nm. A distinctive feature of these antireflective coatings is their weak dependence on the incident angles of the external optical radiation. We propose the quantum theory based on the method of lattice sums and the integral equation method for calculating the optical reflectance and transmittance for nanocomposite films. Optical characteristics of nanostructures can be calculated using the method of integral equations in optics. By the method of lattice sums were able to calculate the optical reflection and transmission for nanocomposite films with the monolayer of silver nanoparticles on substrates of glass, silicon, diamond and silver
Pages: 3-14
References
  1. Гадомский О. Н., Шалин А. С. Эффект оптического просветления нанокристаллического монослоя и границы раздела двух сред // ЖЭТФ. 2007. Т. 132. № 4(10). С. 870-884.
  2. Tamaru H., Kuwata H., Miyazaki H. T., and Miyano K. Resonant light scattering from individual Ag nanoparticles and particle pairs // Appl. Phys. Lett. 2002. V. 80. Р. 1826-1828.
  3. Гадомский О. Н., Алтунин К. К., Ушаков Н. М. Идеальное оптическое просветление композитных пленок, активированных сферическими наночастицами // Письма в ЖЭТФ. 2009. V. 90. № 4. С. 273-278.
  4. Ландау Л. Д., Лифшиц Е. М. Электродинамика сплошных сред. / М.: Физматгиз, 2001.[Landau L. D. and Lifshitz E. M. Electrodynamics of continuous media. V. 8. / (Oxford, New York, Beijing, Frankfurt. 2ed. Pergamon Press. 1984)]
  5. Gadomsky O. N., Altunin K. K., Ushakov N. M., and D. M. Kulbackii. Giant photovoltaic effect // JETP Letters. 2011. V. 93. № 6. Р. 320-325.
  6. Schroter U. and Heitmann D. Surface-plasmon-enhanced transmission through metallic gratings // Phys. Rev. B. 1998. V. 58. Р. 15419.
  7. Popov E., Nevire M., Enoch S., and Reinisch R. Theory of light transmission through subwavelength periodic hole arrays // Phys. Rev. B. 2000. V. 62. Р. 16100.
  8. Martin-Moreno L., Garcia-Vidal F. J., Lezec H. J., Pellerin K. M., Thio T., Pendry J. B., and Ebbesen T. W. Theory of extraordinary optical transmission through subwavelength hole arrays // Phys. Rev. Lett. 2001. V. 86. Р. 1114-1117.
  9. Bravo-Abad J., Garcia-Vidal F. J., and Martin-Moreno L. Resonant transmission of light through finite chains of subwavelength holes in a metallic film // Phys. Rev. Lett. 2004. V. 93. Р. 227401.
  10. Khanikaev A. B., Mousavi S. H., Shvets G., and Kivshar Y. S. One-way extraordinary optical transmission and nonreciprocal spoof plasmons // Phys. Rev. Lett. 2010. V. 105. Р. 126804.
  11. Mrejen M., Israel A., Taha H., Palchan M., and Lewis A. Near-field characterization of extraordinary optical transmission in subwavelength aperture arrays // Optics Express. 2007. V. 15(15). Р. 9129-9138.
  12. Beruete M., Sorolla M., and Campillo I. Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays // Optics Express. 2006. V. 14(12). Р. 5445-5455.
  13. Zhou Y.-S., Gu B.-Y., Wang H.-Y., and Zhao L.-M. Enhancement of the extraordinary optical transmission in a subwavelength metal slit dressed by a metal grating // Phys. Rev. A. 2010. V. 81. Р. 035803.
  14. Mary A., Rodrigo S. G., Martin-Moreno L., and Garcia-Vidal F. J. Holey metal films: from extraordinary transmission to negative-index behavior // Phys. Rev. B. 2009. V. 80. Р. 165431.
  15. Bykov I. V., Dorofeenko A. V., Ilyin A. S., Ryzhikov I. A., Sedova M. V., and Vinogradov A. P. Extraordinary optical transmission through a random array of subwavelength holes // Phys. Rev. B. 2008. V. 78. Р. 054201.
  16. Zhou Y.-S., Gu B.-Y., Lan S., and Zhao L.-M. Time-domain analysis of mechanism of plasmon-assisted extraordinary optical transmission // Phys. Rev. B. 2008. V. 78. Р. 081404.