350 rub
Journal №2 for 2011 г.
Article in number:
Electronic structure of ion-modified materials. Part 2: X-ray-emission spectroscopy
Authors:
D.А. Zatsepin, A.S. Sigov, E.Z. Kurmaev
Abstract:
Analysis of an information capability of the methods that are studying the electronic structure and chemical bonding in the ion-modified compounds allow concluding that the energy spectrum of the electronic states in these materials most effectively can investigated with the help of spectroscopic technique. The most suitable for this purpose is an X-ray emission spectroscopy method, because it is a direct method for studying the electronic structure of solids and, therefore, it is able to receive directly the total information on the energy distribution of the partial electronic states for each atom-component in various materials with the minimum requirements for the preparation of the sample surface. An application of synchrotron radiation for selective excitation of X-ray emission significantly expands the informative capabilities of the method, especially when studying the materials with complex chemical composition due to the clear manifestation of the spectral contribution from a particular phase in a multiphase sample. While varying the excitation energy near the specific spectral features of the fine structure of X-ray absorption spectrum, one can obtain also the ability to identify the nonequivalent atomic positions in the surrounding vicinity of X-ray emitting atom (eg, «planar» and «apex» ligand)
Pages: 3-10
References
  1. Зацепин Д.А., Сигов А.С., Курмаев Э.З. Электронная структура ионно - модифици-рованных материалов. Часть 1: Полупроводниковые системы // Наноматериалы и наноструктуры. 2011. Т. 2. № 1. С. 3-15.
  2. Боровский И.Б. Физические основы ренгеноспектрального анализа. М.: Наука. 1973.
  3. Курмаев Э.З., Черкашенко В.М., Финкельштейн Л.Д.  Рентгеновские спектры твердых тел. М.: Наука. 1988.
  4. Krause M.O. Atomic Radiative and Radiationless Yields for K and L Shells // J. Phys. Chem. Ref. 1979. V. 8. Р. 307-327.
  5. Demchenko I.N., Lawniczak-Jabloska K., Zhuravlev K.S. Local microstructure of Ge layers buried in a silicon crystal studied by extended X-ray absorption fine structure // J. Alloys and Compounds. 2004. V. 362. Issue 1-2. Р. 156-161.
  6. Erenburg S.B., Bausk N.V., Nikiforov A.I. // Proc. of 5th ISTC SAC Seminar on Nanotechnologies in the area of physics, chemistryand biology. 2002. V. 1. Р. 277-276.
  7. Домашевская Э.П., Терехов В.А., Кашкаров В.М., Мануковский Э.Ю., Турищев С.Ю., Молодцов С.Л., Вялых Д.В., Хохлов А.Ф., Машин А.И, Шенгуров В.Г., Светлов С.П., Чалков В.Ю. Синхротронные исследования особенностей электронно-энергетического спектра кремниевых структур. // Физика твердого тела. 2004. Т. 46. Вып. 2. С. 335-340.
  8. Grigoriev D., Hanke M., Schmidbauer Ì., Schäfer P., Konovalov O., Köhler R. Grazing incidence x-ray diffraction at free-standing nanoscale islands: fine structure of diffuse scattering // J. Phys. D: Appl.Phys. 2003. V. 36. Р. A225-A230.
  9. Kurmaev E.Z., Stadler S., Ederer D.L., Harada Y., Shin S., Grush M.M., Callcott T.A., Perera R.C.C., Zatsepin D.A., Ovechkina N.A., Kasai M., Tokura Y., Takahashi T., Chanrdasekaran K., Vijayaraghavan R., Varadaraju U.V. Electronic Structure of Sr2RO4: X-ray fluorescence emission study // Phys. Rev. B. 1998. V. 57. No. 3. Р. 1558-1562.
  10. Kurmaev E.Z., Bartkowski S., Neumann M., Stadler S., Ederer D.L., Galakhov V.R., Yarmoshenko Yu.M., Solovyev I.V., Trofimova V.A., Zatsepin D.A. Electronic Structure of  Ternary Transition Metal Oxides and Sulphides: X-ray Photoelectron and X-ray Emission Spectroscopy Study // J. Electron Spectros. Rel. Phenom. 1998. V. 88. Р. 441-447