350 rub
Journal №2 for 2010 г.
Article in number:
OXYGEN TRANSPORT AND SIOX SUB-OXIDE FORMATION IN LOW-DIMENSIONAL SIO2/SI
Authors:
D. A. ZATSEPIN, S. KASCHIEVA, H. J. FITTING, E. Z. KURMAEV, S. N. SHAMIN
Abstract:
Nanosized heterostructures n-Si/SiO2 with different thicknesses of the oxide film (20, 500 nm) after implantation by Si+ ions with energies of 12 and 150 keV have been investigated using Si L2,3 X-ray emission spectroscopy. The n-Si/SiO2 samples under investigation were prepared in the form of plane_parallel plates 1×1 cm in size with an optical_quality surface. The thicknesses of amorphous SiO2 films formed on a massive silicon substrate were equal to 20 nm (sample no. 1 prepared by low_temperature oxidation of n-Si in a «dry» oxygen atmosphere) and 500 nm (sample no. 2 prepared by oxidation of n-Si in H2O vapors). Both samples were irradiated by a wide beam of Si+ ions (i.e., the beam diameter exceeded the sample sizes) with the energies E = 12 keV (sample no. 1; irradiation dose, 1×1016 Si+/cm2) and E = 150 keV (sample no. 2; irradiation dose, 5×1016 Si+/cm2) at the Research Center Rossendorf (Dresden, Germany). In both implantation processes, the ion current was approximately equal to 2-7 mA/cm2 and the temperature of the samples did not exceed 300 K. After the implantation, the sample with the silicon dioxide film 500 nm thick was annealed in a «dry» nitrogen at 1100 K atmosphere for 1 h. Sample no. 1 was not subjected to heat treatment. The Si L2,3 X-ray emission spectra (the 3d3s  2p1/2, 3/2 electronic transition) of the implanted samples and reference materials were recorded on a Spektrozond ultrasoft X-ray emission spectrometer with a high spatial (4 μm) and energy (E = 0.3 eV) resolution. The ion-beam modification of the interface has been revealed and studied for the heterostructure with a silicon dioxide thickness of 20 nm. An analysis of the Si L2,3 X-ray emission spectra has demonstrated that the Si+ ion implantation leads to the self-ordering of the structure of the initially amorphous SiO2 film 20 nm thick due to the effect of high doses. A mechanism of ion-beam modification of the insulator-semiconductor interface has been proposed. No substantial transformation of the atomic and electronic structures of the heterostructure with a silicon dioxide thickness of 500 nm has been revealed after the ion implantation
Pages: 28-33
References
  1. Герасименко Н. Н., Пархоменко Ю.Н. Кремний - материал наноэлектроники. Москва: Техносфера. 2007. 352 с.
  2. Зацепин Д. А., Яненкова Е. С., Курмаев Э. З., Черкашенко В. М., Шамин С. Н., Чолах С. О. // Физика твердого тела. 2006. Т. 48. С. 204.
  3. Ovsyannikov S. V., Shchennikov Jr. V. V., Shchennikov V. V., Ponosov Y. S., Antonova I. V., Smirnov S. V. // Physica B: Condens. Matt. 2008. V. 403, P. 3424.
  4. Oksengendler B. L., Turaeva N. N. // Rad. Effects and Defect in Sol. 2007. V. 162. P. 69.
  5. Sugakov V. I. Lectures in synergetics. Singapore: World Scientific. 1998. 207 p.
  6. Gangopadhaya S., Hadjipanayis G. C., Shan S. I., Sorensen C. M., Klabunde K. J., Papaefthymiou V., Kostikas A. // Journal of Appl. Phys. 1991. V. 70. Р. 5888.
  7. Курмаев Э. З., Черкашенко В. М., Финкельштейн Л. Д. Рентгеновские спектры твердых тел. М.: Наука. 1988. 162 с.
  8. Zatsepin D. A., Galakhov V. R., Gizhevskii B. A., Kurmaev E. Z., Fedorenko V. V., Samokhvalov A. A., Naumov S. V.// Physical Review B. 1999. V. 59. Р. 211.
  9. Wilks R. G., Kurmaev E. Z., Pivin J. C., Hunt A., Yablonskikh M. V., Zatsepin D. A., Mowes A., Shin S., Palade P., Principi G. // Journal of Phys.: Condens. Matter. 2005. V. 17. Р. 7023.
  10. Зацепин Д. А., Курмаев Э. З., Шеин И. Р., Черкашен-
    ко В. М., Шамин С. Н., Чолах С. О.
    // Физика твердого тела. 2007. Т. 49. С. 72.
  11. Зацепин Д. А., Шеин И. Р., Курмаев Э. З., Черкашенко В. М., Шамин С. Н., Скориков Н. А., YadavA. D., DubeyS. K. // Физика твердого тела. 2008. Т. 50. С. 142.
  12. Зацепин Д. А., Кортов В. С., Курмаев Э. З., Гаврилов Н. В., Wilks R., MoewesA. // Физика твердого тела. 2008. Т. 50. С. 2225.
  13. Ishikawa Y., Shibata N., Fukatsu S. // Thin Solid Films. 1997. V. 294. P. 227.
  14. Salh R., von Czarnowski A., Fitting H.-J. // Journal of .Non-Cryst. Solids. 2007. V. 353. P. 546.
  15. Kutsuki K., Ono T., Hirose K. // Science and Technol. of Advanced Mater. 2007. V. 8. P. 204.
  16. Fitting H.-J., Barfels T., Trukhin A. N., Schmidt B., Gulans A., von Czarnowski A. // Journal. Non-Cryst. Sol. 2002. V. 303. Р. 218.
  17. Kurmaev E. Z., Fedorenko V. V., Shamin S. N., Postnikov A.V., Wiech G., Kim Y. // Physica Scripta. 1992. V. 41. P. 288.
  18. Kurmaev E. Z., Galakhov V. R., Shamin S. N. // Critical Review Sol. State Mater. Sci. 1998. V. 23. P. 65.
  19. Crisp R. S. // Journal. Phys. F: Met. Phys. 1983. V. 13. P. 1325.
  20. Klima J. // Journal Physica C. 1970. V. 3. Р. 70.
  21. Hirose K., Nohira H., Azuma K., Hattori T. // Progress in Surface Science. 2007. V. 82. Р.3.
  22. Зацепин A. Ф., Касчиева С., Бирюков Д. Ю., Дмитриев С. Н., Бунтов Е. А. // ЖТФ. 2009. Т. 79. С. 155.
  23. Гриценко В. А. // Успехи физических наук. 2008. Т. 178. С.727.
  24. Chang G. S., Chae K. H., Whang C. N., Kurmaev E. Z., Zatsepin D. A., Winarski R. P., Ederer D. L., Moewes A., Lee Y. P. // Appl. Phys. Lett. 1999. V. 74. P. 522.
  25. Ziegler J. F., Biersack J. P., Ziegler M. D. URL: The Stopping and Range of Ions in Matter, electronic manual for SRIM-program. http://www.srim.org/SRIM%20Book.htm (дата обращения: 20.05.2008).