350 rub
Journal №1 for 2010 г.
Article in number:
ROLE OF THERMAL INFLUENCE ON INTERNAL ORGANIZATION OF COPPER NANOCLUSTERS
Authors:
J.J. GAFNER, S.L. GAFNER, I.V. CHEPKASOV
Abstract:
Modeling by molecular dynamics method condensation of copper atoms from a gas phase has been lead. For the analysis of thermal influence on the internal organization synthesized from gas phase copper nanoclusters, was simulated their smooth heating in an interval of temperatures from 100 up to 1200 K. Carried out researches have shown some tendencies, characteristic for process of thermal processing synthesized of a gas phase Cu nanoparticles. In particular it has been found out, that the subsequent heating received in the aerosol way clusters in current of several nanoseconds up to temperatures of the order 400500 K allows improving essentially their internal organization with primary formation of the spheric form. Thus, the basic opportunity of the control of formation Cu clusters with the expected form and structure and, hence, with the certain physical properties opens. It can be necessary for manufacture of modern technical devices and, in particular, manufactures of new stores of the information for computer techniques and at catalyze.
Pages: 17-21
References
  1. Рыжонков Д.И., Лёвина В.В., Дзидзигури Э.Л. Наноматериалы. М.: БИНОМ. Лаборатория знаний. 2008. 365 с.
  2. Старостин В.В.Материалы и методы нанотехнологии. М.: БИНОМ. Лабораториязнаний. 2008. 431 с.
  3. Weber A.P., Davoodi W.P., Seipenbusch M. and Kasper G. Size effects in the catalytic activity of unsupported metallic nanoparticles // Journal of Nanoparticle Research. 2003. V. 5. P. 293 - 298.
  4. Weber A.P., Seipenbusch M., Thanner C. and Kasper G. Aerosol catalysis on nickel// Journal of Nanoparticle Research. 1999. V.1. Р. 253 - 265.
  5. Fissan H., Kennedy M.K., Krinke T.J. and Kruis F.E. Nanoparticles from the gas phase as building blocks for electrical devices // Journal of Nanoparticle Research. 2003. V.5. P. 299 - 310.
  6. Рамбиди Н.Г., Березкин А.В.Физические и химические основы нанотехнологий. М.: Физматлит. 2008. 454 с.
  7. Суздалев И.В.Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М.: КомКнига. 2006. 592 с.
  8. Ohno T. Morphology of composite nanoparticles of immiscible binary systems prepared by gas-evaporation technique and subsequent vapor condensation // Journal of Nanoparticle Research. 2002. V. 4. Р. 255 - 260.
  9. Kauffeldt E., Kauffeldt Th. Thermodynamic-controlled gas phase process for the synthesis of nickel nanoparticles of adjustable size and morphology // Journal of Nanoparticle Research. 2006. V. 8. Р. 477 - 488.
  10. Cleri F., Rosato V.Tight-binding potentials for transition metals and alloys // Phys. Rev. 1993. V. B48. P. 22 - 33.
  11. Allen M.P., Tildesley D.J.Computer simulation of liquids. Oxford: Clarendon Press. 1987. 385 p.
  12. ГафнерС.Л., ГафнерЮ.Я. Анализпроцессовконденсациинаночастиц Ni изгазовойфазы//ЖЭТФ. 2008. Т. 134. № 4(10).С. 831 - 844.
  13. Meyer R., Gafne J.J., Gafner S.L, Stappert S., Rellinghaus B., Entel P.Computer Simulations of the Condensation of Nanoparticles from the Gas Phase //Phase Transitions. 2005.
    V. 78. № 1 - 3.Р. 35 - 46.
  14. Ahonen P.P., Moisala A., Tappe U., Brown P.D., Jokiniemi J.K., Kauppinen E.I.Gas-phase crystallization of titanium dioxide nanoparticles // J. Nanoparticle Research. 2002. V. 4. Р. 43 - 52.