E.M. Logachev¹
¹Far Eastern Federal University (Vladivostok, Russia)
¹logachev.em1997@gmail.com
The paper is devoted to the problem of constructing detailed 3D-reconstruction of objects in dynamic scenes when photographing the terrain by underwater autonomous vehicles. An image processing method is being considered that makes it possible to identify dynamic objects and points in a scene, which can be used to position an underwater autonomous vehicle. Identification of points in video stream images and 3D-reconstruction of point data are based on the ideas of the "seed" algorithm.
Goal – increasing the accuracy of 3D-reconstruction of dynamic scenes when performing work by autonomous vehicles in previously unknown conditions. Statistical data characterizing the operation of algorithms for identifying objects and their points have been obtained. Conclusions are drawn about the features of working with small-polygonal and multi-polygonal objects. Approaches to determining the location of an underwater autonomous vehicle by analyzing point data are proposed. The use of image-based positioning systems is relevant in various applications, from unmanned vehicles and robot couriers to autonomous research vehicles. Decisions in this area may affect, for example, the effectiveness of search and rescue or repair work in difficult-to-reach conditions.
Logachev E.M. Point detection during 3D-reconstruction of dynamic scenes in navigation tasks of underwater autonomous vehicles. Information-measuring and Control Systems. 2025. V. 23. № 6. P. 50−60. DOI: https://doi.org/10.18127/j20700814-202506-03 (in Russian)
- Hasler N., Rosenhahn B., Thormahlen T., Wand M., Gall J., Seidel H.P. Markerless motion capture with unsynchronized moving cameras. CVPR. 2009;224−231. DOI:10.1109/CVPR.2009.5206859.
- Ballan L., Brostow G.J., Puwein J., Pollefeys M. Unstructured video-based rendering: Interactive exploration of casually captured videos. ACM Transactions on Graphics. Proceedings of SIGGRAPH. 2010. 29(4). 134−146. DOI:10.1145/1778765.1778824.
- Taneja A., Ballan L., Pollefeys M. Modeling dynamic scenes recorded with freely moving cameras. Conference on Computer Vision. 2010. 613−626. DOI:10.1007/978-3-642-19318-7_48.
- Mustafa A., Kim H., Guillemaut J-Y., Hilton A. General Dynamic Scene Reconstruction from Multiple View Video. ICCV. 2015. 900−908. DOI:10.1109/ICCV.2015.109.
- Mustafa A., Kim H., Guillemaut J-Y., Hilton A. Temporally coherent 4D reconstruction of complex dynamic scenes. IEEE Conference on Computer Vision and Pattern recognition. 2016. 223−245. DOI:10.1109/CVPR.2016.504.
- Lefloch D., Kluge M., Sarbolandi H., Weyrich T., Kolb A. Comprehensive Use of Curvature For Robust And Accurate Online Surface Reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017. Rezhim dostupa: http://reality.cs.ucl.ac.uk/projects/kinect/lefloch17comprehensive.pdf DOI:10.1109/TPAMI.2017.2648803 [data obrashcheniya: 14.03.2023].
- Goshin E.V., Fursov V.A., Bibikov S.A. Rekonstruktsiya 3D-stsen na puchkakh epipolyarnykh ploskostei stereoizobrazhenii. Mekhatronika, Avtomatizatsiya, Upravlenie. 2013. 9. 19−24. (in Russian)
- Goshin E.V. Rekonstruktsiya 3D-stsen po nerektifitsirovannym stereoizobrazheniyam s prorezhivayushchei filtratsiei. Izvestiya Samarskogo nauchnogo tsentra RAN. 2013. 15(6). 748−753. (in Russian)
- Skvortsov A.V. Triangulyatsiya Delone i ee primenenie. Tomsk: Izd-vo Tomskogo un-ta. 2002. 128 c. ISBN 5-7511-1501-5. (in Russian)
- Skvortsov A.V., Kostyuk Yu.L. Effektivnye algoritmy postroeniya triangulyatsii Delone. Geoinformatika. Teoriya i praktika. Tomsk: Izd-vo Tomskogo un-ta. 1998. 1. 22−47. (in Russian)
- Bobkov V.A., Kudryashov A.P., Melman S.V. O vosstanovlenii dvizheniya dinamicheskikh ob'ektov po stereoizobrazheniyam. Programmirovanie. 2018. 3. 29−42. Dostupno po: https://www.elibrary.ru/download/elibrary_35104243_54722268.pdf (data obrashcheniya: 26.01.2025). (in Russian)
- Bobkov V.A., Kudryashov A.P. Identifikatsiya i raschet traektorii dinamicheskikh ob'ektov po stereoizobrazheniyam. Programmirovanie. 2020. 46(1). 3−14. Dostupno po: https://sciencejournals.ru/view-article/?j=program&y=2020&v=0&n=1 &a=Program2001002Bobkov (data obrashcheniya: 13.03.2025). (in Russian)
- Bobkov V., Melman S., Kudrashov A., Scherbatyuk A. Vision-based navigation method for a local maneuvering of the autonomous underwater vehicle. IEEE OES International Symposium on Underwater Technology. (UT 2017 Busan). Busan. 2017. 21−24.
- Bay H., Ess A., Tuytelaars T., Van Gool L. Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding. 2008. V. 110. P. 346−359.
- Jianbo Shi, Carlo Tomasi. Good Features to Track. IEEE Conference on Computer Vision and Pattern Recognition. 1994. P. 593−600.

