350 rub
Journal Information-measuring and Control Systems №6 for 2025 г.
Article in number:
Concept of using flexible project management methods with respect to transponders as information-measuring and control systems in Earth remote sensing tasks. Part 1. Development and modeling
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202506-01
UDC: 005.8: 681.518.3: 528.8
Authors:

V.I. Evseev¹, E.A. Kobets², I.O. Kolachev³

¹⁻³Baltic State Technical University» BSTU "VOENMEH" named after D.F. Ustinov (Saint-Petersburg, Russia)

¹v.evseev43@mail.ru, ²www.kobets@yandex.com, ³kolachev_io@voenmeh.ru

Abstract:

There are various problems in analyzing, designing, and creating of a complex information-measuring and control system. Flexible project management methods are one of the effective methods of solving these problems. The article is dedicated to the study of flexible project management methods for developing the concept of an information-measuring and control system by algorithmic support and accompanying of logical and mathematical modeling within the framework of the project «space system – information-measuring and control system – space radar – Earth remote sensing methods – transponders» («space system – … – transponders»).

The purpose of the author's research is to develop a concept for the use of flexible project management methods (FPMM) in relation to the project «space system – information-measuring and control system – space radar – Earth remote sensing methods – transponders» («space system – … – transponders») using the stages of logical and mathematical modeling and algorithmic support developed by the authors. The essence of such flexible project management methods, implemented on the basis of standards, lies in the implementation of modeling of the project management process at different stages of their life cycle based on norms and rules reflected in natural language, with the involvement of methodological foundations and standards in the field of FPMM (flexible development, agile). The results of the concept development obtained in the study made it possible to lay the foundations for predictive analytics by developing hypotheses and constructing new models with the identification and description of layers in the models, including: sources, causes, events, processes, solvable tasks, resources used, etc. in the process of using a specific transponder model and/or a new Earth remote sensing method, using a specific FPMM. The practical significance. Development and implementation FPMM based on the developed logic and obtained research results allows reduce systemic and subject risks, eliminate the recurrence of design errors, increase the accuracy of the proposed design structures, technical, technological and organizational solutions, realize their control during the process of design and creation of the Earth remote sensing space systems and the means of their calibration using transponders.

Pages: 5-33
References
  1. The Agile Manifesto. Manifesto for Agile Software Development – URL: http://agilemanifesto.org (data obrashcheniya: 15.12.2024).
  2. Sutherland J., Schwaber K. Scrum Guides. Home | Scrum Guides – URL: https://scrumguides.org/ (data obrashcheniya: 15.12.2024).
  3. Kanban Guide. Kanban Guide for Scrum Teams | Scrum.org – URL: https://www.scrum.org/resources/kanban-guide-scrum-teams (data obrashcheniya: 15.12.2024).
  4. Moreira A., Prats-Iraola P., Younis M., Krieger G., Hajnsek I., Papathanassiou K.P. A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine. 2013. V. 1. № 1. P. 6−43. DOI 10.1109/MGRS.2013.2248301.
  5. Evseev V.I., Kolachev I.O. Tendentsii i perspektivy razvitiya radiolokatsionnykh sistem s sintezirovannoi aperturoi kosmicheskogo bazirovaniya. Vestnik obrazovaniya i razvitiya nauki Rossiiskoi akademii estestvennykh nauk. SPb.: 2022. № 1. S. 28−32.
  6. Bulygin M.L., Vnotchenko S.L., Kovalenko A.I. i dr. Rezhim mnogokanalnoi s'emki v mnogoaperturnom kosmicheskom radiolokatore s sintezirovannoi aperturoi. Uspekhi sovremennoi radioelektroniki. 2015. № 5. S. 20−26.
  7. Tsokas A., Pardalos P.M., Rysz M., Dipple K. SAR data applications in earth observation: An overview. Expert Systems with Applications. 2022. V. 205. P. 117342. DOI 10.1016/j.eswa.2022.117342.
  8. Moreira A., Prats-Iraola P., Younis M., Krieger G., Hajnsek I., Papathanassiou K.P. A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine. 2013. V. 1. № 1. P. 6−43. DOI 10.1109/MGRS.2013.2248301.
  9. Evseev V.I., Kolachev I.O., Titov K.I. Voprosy obespecheniya kalibrovki radiolokatsionnykh stantsii v sistemakh distantsionnogo zondirovaniya Zemli. Informatsiya i kosmos. SPb.: 2023. № 4. S. 12−24.
  10. Vяzоvкiнa V.К. Bутылочноe gорлышко // Bольшaя россiйскaя энцiклопediя: нaучно-оbрazоvaтeльный портaл. URL: https://bigenc.ru/c/butylochnoe-gorlyshko-ffa76b/?v=2876153 (daтa оbрaщeнiя: 15.12.2024).
  11. Alignment Report for Reference Architectural Model for Industrie 4.0 // Intelligent Manufacturing System Architecture Sino-German Industrie 4.0 / Intelligent Manufacturing Standardisation Sub-Working Group. URL: https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/hm-2018-manufactoring.pdf?__blob=publicationFile&v=1 (daтa оbрaщeнiя: 15.12.2024).
  12. Basiswissen. RAMI 4.0 // Referenzarchitekturmodell und Industrie 4.0-Komponente - Industrie 4.0. URL: https://www.dinmedia.de/de/publikation/basiswissen-rami-4-0/253488526 (daтa оbрaщeнiя: 15.12.2024).
  13. Фedeрaльноe ageнтстvо по тeхнiчeскому рegулiроvaнiю i мeтролоgii. GОСТ Р 59799-2021 // Умноe проizvоdстvо. Моdeль этaлонной aрхiтeктуры iнdустрii 4.0 (RAMI 4.0). Smart manufacturing. Reference architecture model industry 4.0 (RAMI4.0). URL: https://protect.gost.ru/document1.aspx?control=31&baseC=6&page=0&month=12&year=2024&search=%D0%93%D0% 9E%D0%A1%D0%A2%20%D0%A0%2059799%E2%80%942021&id=241695 (daтa оbрaщeнiя: 15.12.2024).
  14. Higgins JPT, Thomas J., Chandler J., Cumpston M., Li T., Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.5 (updated August 2024). Cochrane. 2024. Available from www.training.cochrane.org/handbook; https://training.cochrane.org/handbook/current/chapter-10 (daтa оbрaщeнiя: 15.12.2024).
  15. Meghanathan N. Principal component analysis of link prediction scores to propose a binary classification model for the betweenness of edges in complex networks. Soc. Netw. Anal. Min. 15, 8 (2025). https://doi.org/10.1007/s13278-025-01438-7(daтa оbрaщeнiя: 11.02.2025).
  16. STANDARDIZATION COUNCIL INDUSTRIE. 4.0 2023: German Standardization Roadmap Industrie 4.0 ED5 Version 5 // Die erste Adresse für die Normung der Zukunft - Standardization Council Industrie 4.0. URL: https://www.sci40.com/ (дата обращения: 15.12.2024).
  17. Yong Zhang, Ming Sheng, Rui Zhou, Ye Wang, Guangjie Han, Han Zhang, Chunxiao Xing, Jing Dong. HKGB: An Inclusive, Extensible, Intelligent, Semi-auto-constructed Knowledge Graph Framework for Healthcare with Clinicians’ Expertise Incorporated // Information Processing & Management. Elsevier. November 2020. URL: https://doi.org/10.1016/j.ipm.2020.102324 (дата обращения: 15.12.2024).
  18. Harper J. The Extensibility of Knowledge Graphs for Natural Language Understanding // AI Time Journal - Artificial Intelligence, Automation, Work and Business. - July 7, 2022. URL: https://www.aitimejournal.com/the-extensibility-of-knowledge-graphs-for-natural-language-understanding/37438/ (дата обращения: 15.12.2024).
  19. SPARQL // SPARQL Query Language A Comprehensive Guide. URL: https://sparql.dev/article/SPARQL_Query_Language_ A_Comprehensive_Guide.html (дата обращения: 15.12.2024).
  20. Blohm I., Wortmann F., Legner C. et al. Data products, data mesh, and data fabric. Bus Inf Syst Eng 66. 643−652 (2024). https://doi.org/10.1007/s12599-024-00876-5 (дата обращения: 15.12.2024).
  21. Hanssen G.K., Jaatun M.G. (2025). Agile Approaches in Critical Infrastructures. In: Marchesi L. et al. Agile Processes in Software Engineering and Extreme Programming – Workshops. XP 2024. Lecture Notes in Business Information Processing. V. 524. Springer. Cham. https://doi.org/10.1007/978-3-031-72781-8_9 (дата обращения: 10.03.2025).
  22. Кузнецов Е.А., Иванов В.В. Модель управления трансграничными проектами в строительстве на базе сквозной оценки проектных рисков // Вестн. Том. гос. ун-та. Экономика. 2024. № 66. С. 279−296. DOI: 10.17223/19988648/66/18. URL: https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001143731 (дата обращения: 18.03.2025).
  23. Левин В.И. Логическое моделирование разрывных функций, Пробл. управл., 2005, № 4, 25−29.
  24. Левин В.И. Логическое моделирование геометрических объектов и принятия решений. УБС. 2007. выпуск 16. 156−162.
  25. Ильичева О.А. Технология логического моделирования и анализа сложных систем // ИВД. 2012. № 4−2.
  26. Soldatova E.A., Keller A.V., Zagrebina S.A. Информационно-логическое моделирование в исследованиях неклассических линейных моделей математической физики // J. Comp. Eng. Math., 2021. Т. 8. выпуск 3. С. 14−31. DOI: 10.14529/jcem210302.
  27. Колыбенко Е.Н. Разграничение понятий математического и логического моделирования // Advanced Engineering Research (Rostov-on-Don). 2019. № 3.
  28. Колесов Ю.Б., Сениченков Ю.Б. Моделирование систем. Объектно-ориентированный подход. Учебное пособие. СПб.: БХВ-Петербург. 2012. 192 с.: ил. ISBN 5-94157-579-3.
  29. Бобков С.П., Бытев Д.О. Моделирование систем: Учеб. пособие. Иван. гос. хим.-технол. ун-т. 2008.
  30. Советов Б.Я., Яковлев С.А. Моделирование систем. М.: Высшая школа. 2001.
  31. Seventika S.Y., Sukestiyarno Y.L., Scolastika Mariani (2018) Critical thinking analysis based on Facione (2015) Angelo (1995) logical mathematics material of vocational high school (VHS). IOP Conf. Series: Journal of Physics: Conference Series. V. 983 (2018) 012067. International Conference on Mathematics, Science and Education 2017 (ICMSE2017). DOI: 10.1088/1742-6596/983/1/012067.
  32. Harizanov V. (2024). Logic in the History and Philosophy of Mathematical Practice. In: Sriraman B. (eds) Handbook of the History and Philosophy of Mathematical Practice. Springer. V. 1-4: V. 3. P. 1905−1920. 1 January 2024. DOI: 10.1007/978-3-031-40846-5_118.
  33. Epstein, Richard L., Szczerba, Leslaw W. Classical Mathematical Logic: The Semantic Foundations of Logic. Princeton University Press: P. 1−522. December 18. 2011. ISBN: 978-140084155-4, 0691123004, 978-069112300-4.
  34. Ramanujam R. (2023). Big Ideas from Logic for Mathematics and Computing Education. In: Banerjee M., Sreejith A.V. (eds) Logic and Its Applications. ICLA 2023. Lecture Notes in Computer Science. V. 13963. Springer. DOI: 10.1007/978-3-031-26689-8_6.
  35. Charles R. Big ideas and understandings as the foundation for elementary and middle school mathematics (2005) J. Math. Educ. Leadersh., 7 (3). P. 9−24.
  36. Aristidou M. Is mathematical logic really necessary in teaching mathematical proofs? Athens Journal of Education. Open Access: V. 7. Issue 1. P. 99−122. February 2020. DOI: 10.30958/aje.7-1-5.
  37. Lorenz Halbeisen, Regula Krapf Gödel's. Theorems and Zermelo's Axioms: A Firm Foundation of Mathematics. Springer. P. 1−236. 16 October 2020. DOI: 10.1007/978-3-030-52279-7.
  38. Lima L.B.d. et al. (2023). Mathematical Modeling: A Conceptual Approach of Linear Algebra as a Tool for Technological Applications. In: Iano Y., Saotome O., Kemper Vásquez G.L., Cotrim Pezzuto C., Arthur R., Gomes de Oliveira G. (eds) Proceedings of the 7th Brazilian Technology Symposium (BTSym’21). BTSym 2021. Smart Innovation, Systems and Technologies. V. 207 SIST. P. 239−248. Springer. DOI: 10.1007/978-3-031-04435-9_22.
  39. Zaytsev A., Kravchenko V. & Shirapov D. (2024) An approach to logical-mathematical computer modeling of linear and nonlinear dynamical systems. E3S Web Conf. V. 583. 2024. Innovative Technologies for Environmental Science and Energetics (ITESE-2024). Article Number 06014. DOI: 10.1051/e3sconf/202458306014.
  40. Wibowo Y.E., Djatmiko R.D., Marwanto A. (2020) Multiple intelligences in welding practice lectures. IOP Publishing Ltd. Journal of Physics: Conference Series. V. 1700. Issue 1. 30 December 2020. Article number 012023. 3rd International Conference on Vocational Education of Mechanical and Automotive Technology. ICoVEMAT 2020. DOI: 10.1088/1742-6596/1700/1/012023.
  41. Azinar J.A., Munzir S., Bahrun (2020) Students' logical-mathematical intelligence through the problem-solving approach. Journal of Physics: Conference Series. V. 1460. Issue 1. 3 March 2020. Article number 012024. 1st Annual International Conference on Mathematics. Science and Technology Education. AICMSTE 2019. DOI: 10.1088/1742-6596/1460/1/012024.
  42. Silwana A., Sa'Dijah C., Sukoriyanto. (2023) Analogical reasoning of students with logical-mathematical intelligence tendency in solving trigonometry problem. AIP Conference Proceedings. V. 2614. 13 June 2023. Article number 040029. 8th International Conference on Mathematics. Science and Education. ICMSE 2021. DOI: 10.1063/5.0125757.
  43. Pathuddin, Linawati, Mubarik, Fadlun, Anggraini. (2022) High logical-mathematical intelligence learner's problem-solving performance on integer operation problem. AIP Conference Proceedings. V. 2577. 13 July 2022. Article number 020048. 6th National Conference on Mathematics and Mathematics Education. SENATIK 2021. DOI: 10.1063/5.0096068.
  44. Volchenkov N.G., Popov S.V., Smirnov A.A., Fetisova A.G. A logical modeling system. (2003) Journal of Computer and Systems Sciences International. 42 (2). P. 264−274. ISSN 10642307. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-9144249315&partnerID=40&md5=b3e58df7add8e9d7a705219f39fdb0f1 (data obrashcheniya: 22.04.2025).
  45. Ilicheva V.V., Guda A.N., Shevchuk P.S. Logical Approaches to Anomaly Detection in Industrial Dynamic Processes. (2020) Advances in Intelligent Systems and Computing. 1156 AISC. P. 352−361. Cited 2 times. DOI: 10.1007/978-3-030-50097-9_36. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088206552&doi=10.1007%2f978-3-030-50097-9_36&partnerID=40&md5=c5d873596970f2070f60054e1f0e239a (data obrashcheniya: 22.04.2025).
  46. M., Hosseinian-Far A., Daneshkhah A., Sedighi T. Mathematical and computational modelling frameworks for integrated sustainability assessment (ISA). (2017) Strategic Engineering for Cloud Computing and Big Data Analytics. P. 3−27. Cited 22 times. DOI: 10.1007/978-3-319-52491-7_1. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019960418&doi=10.1007%2f978-3-319-52491-7_1&partnerID=40&md5=e1a7018731b81dc0c77d45b8eae43483 (data obrashcheniya: 22.04.2025).
  47. Frechtling J.A. Logic Models. (2015) International Encyclopedia of the Social & Behavioral Sciences: Second Edition. P. 299−305. Cited 6 times. DOI: 10.1016/B978-0-08-097086-8.10549-5. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043439160&doi=10.1016%2fB978-0-08-097086-8.10549-5&partnerID=40&md5=ecfb994fe17dfe34f54c89dc75142401 (data obrashcheniya: 22.04.2025).
  48. Wu H., Shen J., Jones J., Gao X., Zheng Y., Krenn H.Y. Using logic model and visualization to conduct portfolio evaluation. (2019) Evaluation and Program Planning. 74. P. 69−75. Cited 2 times. DOI: 10.1016/j.evalprogplan.2019.02.011. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062438560&doi=10.1016%2fj.evalprogplan.2019.02.011&partnerID=40&md5=65d3076e47785b9e6047602f42c66961 (data obrashcheniya: 22.04.2025).
  49. Arefiev I.B., Afanaseva O.V. Implementation of Control and Forecasting Problems of Human-Machine Complexes on the Basis of Logic-Reflexive Modeling. (2022) Lecture Notes in Networks and Systems. 442 LNNS. P. 187−197. DOI: 10.1007/978-3-030-98832-6_17. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128915566&doi=10.1007%2f978-3-030-98832-6_17&partnerID=40&md5=103a76c22d0ba2b013747d60a2531999 (data obrashcheniya: 22.04.2025).
  50. Niyato Dusit (Tao) - Author details - Scopus [Elektronnyi resurs]. URL: https://www.scopus.com/authid/detail.uri?authorId =8919714700 (data obrashcheniya: 18.04.2025).
  51. TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU. SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS, NEXT-GENERATION NETWORKS, INTERNET OF THINGS AND SMART CITIES. IMT-2020 network management and orchestration framework URL: https://www.itu.int/rec/T-REC-Y.3111/en (data obrashcheniya: 23.03.2025).
  52. Gao Z., Wang D., Niyato G., Karagiannidis K., Chen S. Deep Joint Semantic Coding and Beamforming for Near-Space Airship-Borne Massive MIMO Network. IEEE Journal on Selected Areas in Communications. V. 43. № 1. P. 260−278. Jan. 2025. doi: 10.1109/JSAC.2024.3460084. URL: https://ieeexplore.ieee.org/document/10680080 (data obrashcheniya: 19.04.2025).
  53. Gong Y., Yao H., Xiong Z., Chen C.L.P., Niyato D. Blockchain-Aided Digital Twin Offloading Mechanism in Space-Air-Ground Networks. IEEE Transactions on Mobile Computing. V. 24. № 1. P. 183−197. Jan. 2025. doi: 10.1109/TMC.2024.3455417. URL: https://ieeexplore.ieee.org/document/10668860 (data obrashcheniya: 19.04.2025).
  54. Jia Ziyea, Cao Yilua, He Lijunc, Wu Qihuia, Zhu Qiuminga, Niyato Dusitd, Han Zhue Service Function Chain Dynamic Scheduling in Space-Air-Ground Integrated Networks. IEEE Transactions on Vehicular Technology. doi: 10.1109/TVT.2025.3543259. URL: https://ieeexplore.ieee.org/document/10899883 (data obrashcheniya: 19.04.2025).
  55. Wang Z., Sun G., Wang Y., Yu F. and Niyato D. Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks. IEEE Transactions on Cognitive Communications and Networking. doi: 10.1109/TCCN.2025.3553297. URL: https://ieeexplore.ieee.org/document/10935306 (data obrashcheniya: 19.04.2025).
  56. Liu Y.; Dai H.-N.; Wang Q.; Pandey O.J.; Fu Y.; Zhang N.; Niyato D.; Lee C.C. Space-Air-Ground Integrated Networks: Spherical Stochastic Geometry-Based Uplink Connectivity Analysis. IEEE Journal on Selected Areas in Communications. V. 42. № 5. P. 1387−1402. May 2024. doi: 10.1109/JSAC.2024.3365891. URL: https://ieeexplore.ieee.org/document/10438999 (data obrashcheniya: 19.04.2025).
  57. Asheralieva A., Niyato D. and Wei X. Ultrareliable Low-Latency Slicing in Space–Air–Ground Multiaccess Edge Computing Networks for Next-Generation Internet of Things and Mobile Applications. IEEE Internet of Things Journal. V. 11. № 3. P. 3956−3978. 1 Feb.1. 2024. doi: 10.1109/JIOT.2023.3298789. URL: https://ieeexplore.ieee.org/document/10194288 (data obrashcheniya: 19.04.2025).
  58. Ruichen Zhang, Hongyang Du, Dusit Niyato, Jiawen Kang, Zehui Xiong, Abbas Jamalipour, Ping Zhang, Dong In Kim. Generative AI for Space-Air-Ground Integrated Networks. IEEE Wireless Communications. V. 31. № 6. P. 10−20. December 2024. doi: 10.1109/MWC.016.2300547. URL: https://ieeexplore.ieee.org/document/10670196 (data obrashcheniya: 19.04.2025).
  59. Li J.;Sun G.; Wu Q.; Niyato D.; Kang J.; Jamalipour A.; Leung V.C.M. Collaborative Ground-Space Communications via Evolutionary Multi-Objective Deep Reinforcement Learning. IEEE Journal on Selected Areas in Communications. V. 42. № 12. P. 3395−3411. Dec. 2024. doi: 10.1109/JSAC.2024.3459029. URL: https://ieeexplore.ieee.org/document/10679228 (data obrashcheniya: 19.04.2025).
  60. Du J.; Wang J.; Sun A.; Qu J.; Zhang J.; Wu C.; Niyato D. Joint Optimization in Blockchain- and MEC-Enabled Space–Air–Ground Integrated Networks. IEEE Internet of Things Journal. V. 11. № 19. P. 31862−31877. 1 Oct.1. 2024. doi: 10.1109/JIOT.2024.3421529. URL: https://ieeexplore.ieee.org/document/10579794 (data obrashcheniya: 19.04.2025).
  61. Zhang Y.; Gao X.; Yuan H.; Yang K.; Kang J.; Wang P.; Niyato D. Joint UAV Trajectory and Power Allocation With Hybrid FSO/RF for Secure Space–Air–Ground Communications. IEEE Internet of Things Journal. V. 11. № 19. P. 31407−31421. 1 Oct.1. 2024. doi: 10.1109/JIOT.2024.3419264. URL: https://ieeexplore.ieee.org/document/10572013 (data obrashcheniya: 19.04.2025).
  62. Xu M.; Niyato D.; Xiong Z.; Kang J.; Cao X.; Shen X.S.; Miao C. Quantum-Secured Space-Air-Ground Integrated Networks: Concept, Framework, and Case Study. IEEE Wireless Communications. V. 30. № 6. P. 136−143. December 2023. doi: 10.1109/MWC.008.2200163. URL: https://ieeexplore.ieee.org/document/9915359 (data obrashcheniya: 19.04.2025).
  63. Montazeri M., Kebriaei H., Araabi B.N., Kang J., Niyato D. Distributed Mechanism Design in Continuous Space for Federated Learning Over Vehicular Networks. IEEE Transactions on Vehicular Technology. V. 72. № 4. P. 4196−4206. April 2023. doi: 10.1109/TVT.2022.3215775. URL: https://ieeexplore.ieee.org/document/9925078 (data obrashcheniya: 19.04.2025).
  64. Du H.; Wang J.; Niyato D.; Kang J.; Xiong Z.; Kim D.I.; Soong B.H. Performance Analysis of Free-Space Information Sharing in Full-Duplex Semantic Communications. GLOBECOM 2023−2023 IEEE Global Communications Conference. Kuala Lumpur, Malaysia. 2023. P. 1579−1585. doi: 10.1109/GLOBECOM54140.2023.10437487. URL: https://ieeexplore.ieee.org/document/10437487 (data obrashcheniya: 19.04.2025).
  65. Gong Y., Yao H., Xiong Z., Guo S., Yu F.R, Niyato D. Computation Offloading and Energy Harvesting Schemes for Sum Rate Maximization in Space-Air-Ground Networks. GLOBECOM 2022−2022 IEEE Global Communications Conference. Rio de Janeiro. Brazil. 2022. P. 3941−3946. doi: 10.1109/GLOBECOM48099.2022.10001418. URL: https://ieeexplore.ieee.org/document/10001418 (data obrashcheniya: 19.04.2025).
  66. Kaewpuang R., Xu M., Niyato D., Yu H., Xiong Z. Resource Allocation in Quantum Key Distribution (QKD) for Space-Air-Ground Integrated Networks. 2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). Paris, France. 2022. P. 71−76. doi: 10.1109/CAMAD55695.2022.9966894. URL: https://ieeexplore.ieee.org/document/9966894 (data obrashcheniya: 19.04.2025).
  67. Xuelin Cao, Bo Yang, Chongwen Huang, Chau Yuen, Yan Zhang, Dusit Niyato, Zhu Han. Converged Reconfigurable Intelligent Surface and Mobile Edge Computing for Space Information Networks. IEEE Network. V. 35. № 4. P. 42−48. July/August 2021. doi: 10.1109/MNET.011.2100049. URL: https://ieeexplore.ieee.org/document/9520318 (data obrashcheniya: 19.04.2025).
  68. Niyato D.; Hossain E.; Wavegedara K.C., Bhargava V. Queue-Aware Power Allocation for Space-Time Block Coded MIMO Systems. 2007 IEEE Wireless Communications and Networking Conference. Hong Kong, China. 2007. P. 2200−2204. doi: 10.1109/WCNC.2007.411. URL: https://ieeexplore.ieee.org/document/4224656 (data obrashcheniya: 19.04.2025).
  69. Pedrycz, Witold - Author details – Scopus [Elektronnyi resurs]. URL: https://www.scopus.com/authid/detail.uri?authorId =56854903200 (data obrashcheniya: 18.04.2025).
  70. Sathya D., Saravanan G., Thangamani R. Fuzzy Logic and Its Applications in Mechatronic Control Systems (2024). Computational Intelligent Techniques in Mechatronics. P. 211−241. Cited 1 times. DOI: 10.1002/9781394175437.ch7 URL: https://onlinelibrary.wiley.com/doi/10.1002/9781394175437.ch7 (data obrashcheniya: 24.05.2025).
  71. Xuemei Jiang, Yangyang Guo, Yue Zhang, Yanjie Song, Witold Pedrycz, Lining Xing. An evolutionary task scheduling algorithm using fuzzy fitness evaluation method for communication satellite network. Swarm and Evolutionary Computation. V. 92. 2025. Article number 101830. ISSN 2210-6502. DOI: https://doi.org/10.1016/j.swevo.2024.101830. URL: https://www.sciencedirect.com/science/article/pii/S2210650224003687 (data obrashcheniya: 03.05.2025).
  72. Song Y., Ou J., Pedrycz W., Suganthan P.N., Wang X., Xing L., Zhang Y. Generalized Model and Deep Reinforcement Learning-Based Evolutionary Method for Multitype Satellite Observation Scheduling. (2024) IEEE Transactions on Systems, Man, and Cybernetics: Systems. V. 54. № 4. P. 2576−2589. April 2024. DOI: 10.1109/TSMC.2023.3345928. URL: https://ieeexplore.ieee.org/document/10399872 (data obrashcheniya: 03.05.2025).
  73. Shi Q., Zhang H., Pedrycz W. Robust Learning-Based Gain-Scheduled Path Following Controller Design for Autonomous Ground Vehicles. IEEE Transactions on Emerging Topics in Computational Intelligence. V. 8. № 2. P. 1427−1436. April 2024. DOI: 10.1109/TETCI.2023.3349183. URL: https://ieeexplore.ieee.org/document/10390541 (data obrashcheniya: 03.05.2025).
  74. Chen M., Chun J., Pedrycz W., He Y., Liu X., Wu G. RCM: A Neural Policy Model With Reconstruction Mechanism to Construct a Solution for the Agile Satellite Scheduling Problem. IEEE Transactions on Cybernetics. V. 55. № 4. P. 1941−1953. April 2025. DOI: 10.1109/TCYB.2025.3535777. URL: https://ieeexplore.ieee.org/document/10903990 (data obrashcheniya: 03.05.2025).
  75. Yingying Ren, Qiuli Li, Yangyang Guo, Witold Pedrycz, Lining Xing, Anfeng Liu, Yanjie Song. A distance similarity-based genetic optimization algorithm for satellite ground network planning considering feeding mode. Expert Systems with Applications. V. 268. 2025. 126303. ISSN 0957-4174. DOI: https://doi.org/10.1016/j.eswa.2024.126303. URL: https://www.sciencedirect.com/science/article/pii/S0957417424031701 (data obrashcheniya: 03.05.2025).
  76. Mao X., Wu G., Fan M., Cao Z. and Pedrycz W. DL-DRL: A Double-Level Deep Reinforcement Learning Approach for Large-Scale Task Scheduling of Multi-UAV. IEEE Transactions on Automation Science and Engineering. V. 22. P. 1028−1044. 2025. DOI: 10.1109/TASE.2024.3358894. URL: https://ieeexplore.ieee.org/document/10430091 data obrashcheniya: 03.05.2025).
  77. Zhou J., Huang C., Gao C., Wang Y., Pedrycz W. and Yuan G. Reweighted Subspace Clustering Guided by Local and Global Structure Preservation. IEEE Transactions on Cybernetics. V. 55. № 3. P. 1436−1449. March 2025. DOI: 10.1109/TCYB.2025.3526176. URL: https://ieeexplore.ieee.org/document/10849778 (data obrashcheniya: 03.05.2025).
  78. Zhang C., Oh S.-K., Fu Z. and Pedrycz W. Incremental Fuzzy Clustering-Based Neural Networks Driven With the Aid of Dynamic Input Space Partition and Quasi-Fuzzy Local Models. IEEE Transactions on Cybernetics. V. 54. № 5. P. 2978−2991. May 2024. DOI: 10.1109/TCYB.2022.3228303. URL: https://ieeexplore.ieee.org/document/10002859 (data obrashcheniya: 03.05.2025).
  79. Wu G., Xiang Z., Wang Y., Gu Y., Pedrycz W. Improved Adaptive Large Neighborhood Search Algorithm Based on the Two-Stage Framework for Scheduling Multiple Super-Agile Satellites. (2024) IEEE Transactions on Aerospace and Electronic Systems. 60 (5). P. 7185−7200. Cited 7 times. DOI: 10.1109/TAES.2024.3416427. URL: https://ieeexplore.ieee.org/document/10564178 (data obrashcheniya: 05.05.2025).
  80. Song Y., Suganthan P.N., Pedrycz W., Yan R., Fan D., Zhang Y., "Energy-Efficient Satellite Range Scheduling Using a Reinforcement Learning-Based Memetic Algorithm. IEEE Transactions on Aerospace and Electronic Systems. V. 60. № 4. P. 4073−4087. Aug. 2024. DOI: 10.1109/TAES.2024.3371964. URL: https://ieeexplore.ieee.org/document/10463527 (data obrashcheniya: 05.05.2025).
  81. Song Y., Ou J., Suganthan P.N., Pedrycz W., Yang Q., Xing L. Learning Adaptive Genetic Algorithm for Earth Electromagnetic Satellite Scheduling. IEEE Transactions on Aerospace and Electronic Systems. V. 59. № 6. P. 9010−9025. Dec. 2023. DOI: 10.1109/TAES.2023.3312626. URL: https://ieeexplore.ieee.org/document/10241983 (data obrashcheniya: 05.05.2025).
  82. Hu X., Liu X., Pedrycz W., Liao Q., Shen Y., Li Y., Wang S., "Multi-View Fuzzy Classification With Subspace Clustering and Information Granules. IEEE Transactions on Knowledge and Data Engineering. V. 35. № 11. P. 11642−11655. 1 Nov. 2023. DOI: 10.1109/TKDE.2022.3231929. URL: https://ieeexplore.ieee.org/document/9999253 (data obrashcheniya: 05.05.2025).
  83. Han P., Guo Y., Wang P., Li C., Pedrycz W. Optimal Orbit Design and Mission Scheduling for Sun-Synchronous Orbit On-Orbit Refueling System. IEEE Transactions on Aerospace and Electronic Systems. V. 59. № 5. P. 4968−4983. Oct. 2023. DOI: 10.1109/TAES.2023.3247552. URL: https://ieeexplore.ieee.org/document/10075629 (data obrashcheniya: 05.05.2025).
  84. Wu G., Mao X., Chen Y., Wang X., Liao W., Pedrycz W. Coordinated Scheduling of Air and Space Observation Resources via Divide-and-Conquer Framework and Iterative Optimization. IEEE Transactions on Aerospace and Electronic Systems. V. 59. № 4. P. 3631−3642. Aug. 2023. DOI: 10.1109/TAES.2022.3228832.URL: https://ieeexplore.ieee.org/document/9983510 (data obrashcheniya: 05.05.2025).
  85. Liu H., Wu G., Zhou L., Pedrycz W., Suganthan P.N. Tangent-Based Path Planning for UAV in a 3-D Low Altitude Urban Environment. IEEE Transactions on Intelligent Transportation Systems. V. 24. № 11. P. 12062−12077. Nov. 2023. DOI: 10.1109/TITS.2023.3285568.URL: https://ieeexplore.ieee.org/document/10159549 (data obrashcheniya: 05.05.2025).
  86. Shu Z., Song A., Wu G., Pedrycz W. Variable Reduction Strategy Integrated Variable Neighborhood Search and NSGA-II Hybrid Algorithm for Emergency Material Scheduling. Complex System Modeling and Simulation. V. 3. № 2. P. 83−101. June 2023. DOI: 10.23919/CSMS.2023.0006.URL: https://ieeexplore.ieee.org/document/10158517 (data obrashcheniya: 05.05.2025).
  87. Li J., Wu G., Liao T., Fan M., Mao X., Pedrycz W. Task Scheduling Under a Novel Framework for Data Relay Satellite Network via Deep Reinforcement Learning. IEEE Transactions on Vehicular Technology. V. 72. № 5. P. 6654−6668. May 2023. DOI: 10.1109/TVT.2022.3233358. URL: https://ieeexplore.ieee.org/document/10004750 (data obrashcheniya: 05.05.2025).
  88. Huangke Chen, Xin Zhang, Ling Wang, Lining Xing, Witold Pedrycz. Resource-constrained self-organized optimization for near-real-time offloading satellite earth observation big data. (2022). Knowledge-Based Systems. V. 253. 11 October 2022. Article number 109496. ISSN 0950-7051. DOI: https://doi.org/10.1016/j.knosys.2022.109496.
    URL: https://www.sciencedirect.com/science/article/pii/S0950705122007481 (data obrashcheniya: 05.05.2025).
  89. Wu G., Luo Q., Zhu Y., Chen X., Feng Y., Pedrycz W. Flexible Task Scheduling in Data Relay Satellite Networks. (2022) IEEE Transactions on Aerospace and Electronic Systems. V. 58. № 2. P. 1055−1068. April 2022. DOI: 10.1109/TAES.2021.3115587. URL: https://ieeexplore.ieee.org/document/9548803 (data obrashcheniya: 05.05.2025).
  90. Zuo H., Lu J., Zhang G., Pedrycz W. Fuzzy Rule-Based Domain Adaptation in Homogeneous and Heterogeneous Spaces. (2019). in IEEE Transactions on Fuzzy Systems. V. 27. № 2. P. 348−361. Feb. 2019. DOI: 10.1109/TFUZZ.2018.2853720. URL: https://ieeexplore.ieee.org/document/8408532 (data obrashcheniya: 05.05.2025).
  91. Xu K., Pedrycz W., Li Z., Nie W. High-Accuracy Signal Subspace Separation Algorithm Based on Gaussian Kernel Soft Partition. (2019), IEEE Transactions on Industrial Electronics. V. 66. № 1. P. 491−499. Jan. 2019. DOI: 10.1109/TIE.2018.2823666. URL: https://ieeexplore.ieee.org/document/8331919 (data obrashcheniya: 05.05.2025).
  92. Liu S., Pedrycz W., Gacek A., Dai Y. A two-phase method of forming a granular representation of signals. (2017). Signal Processing. V. 141. December 2017. P. 1−15. ISSN 0165-1684. DOI: 10.1016/j.sigpro.2017.05.026.
    URL: https://www.sciencedirect.com/science/article/pii/S0165168417301974 (data obrashcheniya: 05.05.2025).
  93. Zhu X., Pedrycz W., Li Z. A Design of Granular Takagi–Sugeno Fuzzy Model Through the Synergy of Fuzzy Subspace Clustering and Optimal Allocation of Information Granularity. (2018) IEEE Transactions on Fuzzy Systems. V. 26. № 5. P. 2499−2509. Oct. 2018. DOI: 10.1109/TFUZZ.2018.2813314. URL: https://ieeexplore.ieee.org/document/8309423 (data obrashcheniya: 06.05.2025).
  94. Wu G., Wang H., Pedrycz W., Li H., Wang L. Satellite observation scheduling with a novel adaptive simulated annealing algorithm and a dynamic task clustering strategy. (2017). Computers & Industrial Engineering. V. 113. P. 576−588. ISSN 0360-8352. DOI: 10.1016/j.cie.2017.09.050. URL: https://www.sciencedirect.com/science/article/pii/S0360835217304679 (data obrashcheniya: 06.05.2025).
  95. Sengupta S., Das S., Nasir M., Vasilakos A.V., Pedrycz W. An Evolutionary Multiobjective Sleep-Scheduling Scheme for Differentiated Coverage in Wireless Sensor Networks. (2012) IEEE Transactions on Systems, Man, and Cybernetics. Part C (Applications and Reviews). V. 42. № 6. P. 1093−1102. Nov. 2012. DOI: 10.1109/TSMCC.2012.2196996.
    URL: https://ieeexplore.ieee.org/document/6330048 (data obrashcheniya: 06.05.2025).
  96. Nobuhara H., Hirota K., Di Martino F., Pedrycz W., Sessa S. Fuzzy Relation Equations for Compression/Decompression Processes of Colour Images in the RGB and YUV Colour Spaces. (2005) Fuzzy Optimization and Decision Making. V. 4. № 3. P. 235−246. DOI: 10.1007/s10700-005-1892-1. URL: https://link.springer.com/article/10.1007/s10700-005-1892-1 (data obrashcheniya: 06.05.2025).
  97. Nobuhara H., Pedrycz W., Hirota K. Relational image compression: optimizations through the design of fuzzy coders and YUV color space. (2005). Soft Computing. V. 9. № 6. P. 471−479. DOI: 10.1007/s00500-004-0366-7. URL: https://link.springer.com/article/10.1007/s00500-004-0366-7 (data obrashcheniya: 06.05.2025).
  98. Qiao, Junfei - Author details – Scopus [Elektronnyi resurs]. URL: https://www.scopus.com/authid/detail.uri?authorId=9634105900 (data obrashcheniya: 18.04.2025).
  99. Prezident Rossii. Zasedanie Soveta po strategicheskomu razvitiyu i natsionalnym proektam. URL: http://www.kremlin.ru/events/president/news/75762 (data obrashcheniya: 05.12.2024).
  100. Pervyi kanal: Novosti. Video. Teleprogramma. Pryamoi efir. V Rossii na realizatsiyu natsionalnykh proektov iz byudzheta vydelyat svyshe 40 trillionov rublei. Novosti. Pervyi kanal. URL: https://www.1tv.ru/news/2024-12-05/494647-v_rossii_na_realizatsiyu_natsionalnyh_proektov_iz_byudzheta_vydelyat_svyshe_40_trillionov_rubley (data obrashcheniya: 05.12.2024).
  101. Prezident Rossii. Ukaz Prezidenta Rossiiskoi Federatsii ot 07.05.2024 g. № 309. O natsionalnykh tselyakh razvitiya Rossiiskoi Federatsii na period do 2030 goda i na perspektivu do 2036 goda. URL: http://www.kremlin.ru/acts/bank/50542 (data obrashcheniya: 07.12.2024).
  102. Konopatskii E.V., Shpinkov V.A., Bezditnyi A.A. Matematicheskoe modelirovanie napryazhenno-deformirovannogo sostoyaniya tsilindricheskoi obolochki membrannogo pokrytiya s podkreplyayushchim khelementom. Vestnik YuUrGU. Seriya "Stroitelstvo i arkhitektura». 2022. T. 22. № 4. S. 57−65. DOI: 10.14529/build220406.
  103. Pershin I.M., Veselov G.E., Approksimatsionnye modeli peredatochnykh funktsii raspredelennykh ob'ektov. Izvestiya YuFU. Tekhnicheskie nauki. 2015. № 7 (168). S. 126−138.
  104. Simon K., The Digital 2024 Global Overview Report – Datareportal.com. 31 January 2024.
    URL: https://datareportal.com/reports/digital-2024-global-overview-report (data obrashcheniya: 07.12.2024).
  105. Sovetov B.Ya., Yakovlev S.A. Modelirovanie sistem: uchebnik dlya vuzov. Sankt-Peterburgskii gosudarstvennyi elektrotekhnicheskii universitet "LETI im. V.I. Ulyanova (Lenina)". 7-e izd. Moskva: Yurait, 2022. 343 s. (Vysshee obrazovanie). Spisok lit.: S. 340. ISBN 978-5-9916-3916-3.
  106. Erzhenin R.V. Induktivnyi i sistemnyi podkhody k modelirovaniyu gosudarstvennoi integrirovannoi informatsionnoi sistemy. SAEC. 2024. № 2. S. 274−282. DOI: 10.18720/SPBPU/2/id 24-174.
  107. Astrakhantseva I.A., Gorev S.V., Astrakhantsev R.G. Sistemnyi podkhod k analizu fraktalnoi prirody slozhnykh tekhnicheskikh sistem. Izvestiya VUZov EFiUP. 2023. № 3 (57). S. 89−97. DOI: 10.6060/ivecofin.2023573.657.
  108. Suleimanova D.O., Magomaev T.R. ROL CHATGPT V NAUKE O DANNYKh. Obshchestvo, ekonomika, upravlenie. 2023. № 2. S. 48−54. DOI: 10.47475/2618-9852-2023-8-2-48-54.
  109. Dolgii P.S. PROGRAMMNYE OSOBENNOSTI RAZRABOTKI GIS-PROEKTA "GEODINAMIKA I TEKhNOGENEZ BELARUSI». Vestnik Polotskogo gosudarstvennogo universiteta. Seriya F. Stroitelstvo. Prikladnye nauki. 2023. № 1 (33). S. 74−81.
  110. Abiteboul S. Querying semi-structured data //Database Theory–ICDT'97: 6th International Conference Delphi. Greece. January 8–10. 1997 Proceedings 6. Springer Berlin Heidelberg. 1997. S. 1−18.
  111. Lesbegueries J., Gaio M., Loustau P. Geographical information access for non-structured data //Proceedings of the 2006 ACM symposium on applied computing. 2006. S. 83−89.
Date of receipt: 23.06.2025
Approved after review: 18.07.2025
Accepted for publication: 10.11.2025