350 rub
Journal Information-measuring and Control Systems №5 for 2025 г.
Article in number:
Applicative tools for constructing and executing computations in distributed environments based on Domain-Specific Language (DSL)
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202505-08
UDC: 004.4, 004.042
Authors:

V.V. Roslovtsev¹, D.R. Maksimov², F.S. Chervakov³, E.E. Balashova⁴, K.G. Belyakov⁵, D.N. Gushchin⁶, S.I. Valiullina⁷, E.D. Kalinkin⁸, R.N. Kuzmin⁹, A.Sh. Sirozhev¹⁰, A.V. Fateev¹¹

¹⁻¹¹National Research Nuclear University MEPhI (Moscow, Russia) ¹vvroslovtsev@mephi.ru

Abstract:

Problem statement. The development and application of environments for compositional computation description involves solving the tasks of providing tools for preliminary verification of compositional structures under creation for their correctness and feasibility. Existing solutions usually offer a limited range of such capabilities, or none at all. Known formal models only partially solve these issues and usually do not combine compositional approach and side-effect tracking in distributed environment.

Purpose. Developing a formal model for compositional description of asynchronous computations, including execution tracing, preliminary composition verification, and object evolution tracking, as well as building software based on this model.

Results. A comprehensive solution is proposed, including: (a) introducing conceptual structures as types integrated into the computational environment; (b) utilizing a specially structured environment with explicitly defined computational element placements; (c) employing a formal and architectural approach for the semantic description of objects, processes, and their environments; (d) applying a monadic-like approach for computation composition. A domain-specific language (DSL) is described in the form of a fluent API. Practical significance. The proposed model and architecture can be applied to develop environments enabling process visualization, automated composition correctness verification, and execution tracing support. Potential application areas include knowledge management systems, decision support systems, and other semantic-based technologies.

Pages: 78-85
References
  1. Volfengagen V.E. Applikativnye vychislitelnye tekhnologii. Gotovye resheniya dlya inzhenera, prepodavatelya, aspiranta, studenta. Pod red. k. t. n. L.Yu. Ismailovoi. M.: ZAO "YurInfoR". 2009. 64 s. (in Russian)
  2. Volfengagen V.E. Kategorialnaya abstraktnaya mashina. Konspekt lektsii: vvedenie v vychisleniya. Izd. 2-e. M: AO "Tsentr YurInfoR". 2002. 96 s. (in Russian)
  3. Volfengagen V.E. Konstruktsii yazykov programmirovaniya. Priemy opisaniya. M.: AO "Tsentr YurInforR". 2001. 276 s. (in Russian) 4. Din Dzh., Gemavat S. MapReduce: uproshchennaya obrabotka dannykh na bolshikh klasterakh. Communications of the ACM. 2008. T. 51. № 1. S. 107−113. (in Russian)
  4. Roslovtsev V.V. Applicative computational Environment Construction. Sb. nauchnykh trudov Sworld. 2013. T. 6. № 2. S. 53−60. (in Russian)
  5. Roslovtsev V.V. Struktura i metod formirovaniya applikativnoi vychislitelnoi sredy. Sb. nauchnykh trudov SWorld. 2011. T. 5. № 4. S. 14−21. (in Russian) 7. Roslovtsev V.V., Shumskii L.D. Dekompozitsiya i integratsiya ob'ektov v applikativnoi srede na osnove neodnorodnoi seti. Informatsionnye tekhnologii v proektirovanii i proizvodstve (M.: FGUP "VIMI"). 2013. № 3. S. 34−41. (in Russian)
  6. Uait T. Hadoop: polnoe rukovodstvo. Izd. 4-e. M.: DMK Press. 2016. 832 s. (in Russian)
  7. Shapkin P.A., Inozemtsev A.N. Covmeshchennaya sistema logicheskogo vyvoda i dinamicheskoi verifikatsii spetsifikatsii programmnykh komponentov. Informatsionno-izmeritelnye i upravlyayushchie sistemy. 2024. T. 25. № 5. S. 69−79. (in Russian)
  8. Capriolo E., Wampler D., Rutherglen J. Programming Hive. O’Reilly Media. 2012. 350 p.
  9. Carbone P. et al. Apache Flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering. 2015. V. 36. P. 28−38.
  10. Gates A.F. Programming Pig. 2nd ed. O’Reilly Media. 2016. 368 p.
  11. Ismailova L., Wolfengagen V., Kosikov S. Cognitive System to Clarify the Semantic Vulnerability and Destructive Substitutions. Procedia Computer Science. 2021. № 190. P. 341−360.
  12. Karau H., Konwinski A., Wendell P., Zaharia M. Learning Spark: Lightning-Fast Big Data Analysis. O’Reilly Media. 2015. 276 p.
  13. Mernik M., Heering J., Sloane A.M. When and how to develop domain-specific languages. ACM Computing Surveys (CSUR). 2005. V. 37. № 4. S. 316−344.
  14. Roslovtsev V.V. Applicative Computational Environments Construction. Sb. nauchnykh trudov Sworld. 2013. T. 6. № 2. S. 53−60.
  15. Voelter M. DSL Engineering: Designing, Implementing and Using Domain-Specific Languages – CreateSpace Independent Publishing Platform. 2013. 558 p.
Date of receipt: 03.09.2025
Approved after review: 17.09.2025
Accepted for publication: 22.09.2025