350 rub
Journal Information-measuring and Control Systems №3 for 2025 г.
Article in number:
Method of initial alignment of the video-inertial navigation system for an unmanned aerial vehicle
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202503-08
UDC: 623.746.4-519
Authors:

D.S. Mongush1, S.V. Ippolitov2, D.V. Lopatkin3

1-3 MESC of Air Forces N.Е. Zhukоvsky and Yu.А. Gаgаrin Air Force Academy (Vоrоnеzh, Russia)

1 denzin.mongush@mail.ru, 2 s_ippolitoff@mail.ru, 3 dimkaao@yandex.ru

Abstract:

An analysis of existing methods of initial alignment revealed that the alignment process of modern strapdown inertial navigation systems can take more than five minutes. The issue of alignment is especially acute for strapdown inertial navigation systems based on microelectromechanical systems (MEMS), which are traditionally installed on short-range unmanned aerial vehicles (UAVs). The low accuracy characteristics of modern MEMS do not allow for autonomous initial alignment of strapdown inertial navigation systems using the gyrocompassing method.

Aim of work – development of a method for the initial alignment of an unmanned aerial vehicle's video-inertial navigation system that ensures high accuracy, automatic execution, and minimal initialization time without the use of additional equipment in conditions of absent or limited availability of satellite navigation system signals.

A new method for the initial alignment and compensation of gyroscope block errors in a video-inertial navigation system has been developed. This method differs from previously known methods (such as gyrocompassing, the use of stored coordinates, or satellite signals) by utilizing an onboard monocular vision system and a constellation of three ground-based beacons. It is based on the method of generalized angulation – a mathematical approach that determines the position of an object in space by using angles between directions to several known points. This ensures the determination of the UAV’s initial angular and linear position, as well as the drift vector of the gyroscope block. An experimental setup was developed, and tests confirmed the high efficiency of the proposed method: measurement errors were 0.001 meters for linear coordinates and 0.01 degrees for angular coordinates within 10 seconds, which is 16 times better than alignment using existing methods.

The developed method can be used by industrial organizations and research institutions in the design of UAV navigation systems based on optoelectronic components to expand their tactical capabilities.

Pages: 75-82
For citation

Mongush D.S., Ippolitov S.V., Lopatkin D.V. Method of initial alignment of the video-inertial navigation system for an unmanned aerial vehicle. Information-measuring and Control Systems. 2025. V. 23. № 3. P. 75−82. DOI: https://doi.org/10.18127/j20700814-202503-08 (in Russian)

References
  1. Turik A.A., Miroshnikov V.I., Goncharov S.A. Primenenie BPLA storonami pri vedenii boevykh deistvii v Sirii [Elektronnyi resurs]. Rezhim dostupa: http://www.russiandrone.ru (data obrashcheniya: 25.01.2025). (in Russian)
  2. Klimov M. Na ostrie protivodeistviya: BLA protiv PVO [Elektronnyi resurs]. Voennoe obozrenie. 2020. Rezhim dostupa: www.topwar.ru (data obrashcheniya: 14.01.2025). (in Russian)
  3. Shcherbakov V. Udarnye BLA. Aerokosmicheskoe obozrenie. 2013. № 6. S. 22−23. (in Russian)
  4. Linnik S.V. Boevoe primenenie bespilotnykh letatelnykh apparatov [Elektronnyi resurs]. Voennoe obozrenie. 2013. Rezhim dostupa: www.topwar.ru (data obrashcheniya: 25.01.2025). (in Russian)
  5. Kondratev A. Perspektivy razvitiya i primeneniya bespilotnykh i robotizirovannykh sredstv vooruzhennoi borby v VS vedushchikh zarubezhnykh stran. Zarubezhnoe voennoe obozrenie. 2011. № 5. S. 14−21. (in Russian)
  6. Blinkov Yu. Perspektivy razvitiya bespilotnoi aviatsii v vedushchikh stranakh NATO. Zarubezhnoe voennoe obozrenie. 2012. № 12. S. 54−57. (in Russian)
  7. Chakhovskii Yu.N., Kovyazin B.S. Vozmozhnosti ispolzovaniya BPLA v voennykh tselyakh. Nauka i voennaya bezopasnost. 2008. № 2. S. 38−40. (in Russian)
  8. Chekunov A. Programma sozdaniya BPLA v interesakh VS SShA. Zarubezhnoe voennoe obozrenie. 2014. № 9. S. 65−71. (in Russian)
  9. Demidyuk A., Fomin A. Drony v gorode: novye vozmozhnosti ili novye ugrozy [Elektronnyi resurs]. Sistemy bezopasnosti. 2019. № 6. Rezhim dostupa: www.secuteck.ru (data obrashcheniya: 03.02.2025). (in Russian)
  10. Rastopchin V.V. Udarnye bespilotnye letatelnye apparaty i protivovozdushnaya oborona – problemy i perspektivy protivostoyaniya [Elektronnyi resurs]. Rezhim dostupa: www.researchgate.net (data obrashcheniya: 06.02.2025). (in Russian)
  11. Inozemtsev D.P. Bespilotnye letatelnye apparaty: teoriya i praktika [Elektronnyi resurs]. Rezhim dostupa: www.rusdrone.ru (data obrashcheniya: 11.02.2025). (in Russian)
  12. Astashkin D.G. Kontseptualnye vzglyady komandovaniya VVS SShA na razvitie bespilotnoi aviatsii. Sb. materialov i statei II nauch.-prakt. konf. "Perspektivy razvitiya i primeneniya kompleksov BPLA". MO, 924 GTs bespilotnoi aviatsii. g. Kolomna. 2017. S. 183−196. (in Russian)
  13. Bogdanov V.S., Kedrov V.D., Tazba A.M. Osobennosti postroeniya integrirovannykh inertsialno-sputnikovykh navigatsionnykh sistem [Elektronnyi resurs]. Informatsionno-upravlyayushchie sistemy. 2005. № 2. Rezhim dostupa: https://cyberleninka.ru/article/n/osobennosti-postroeniya-integrirovannyh-inertsialno-sputnikovyh-navigatsionnyh-sistem (data obrashcheniya: 21.02.2025). (in Russian)
  14. GOST 20058−80. Dinamika letatelnykh apparatov v atmosfere. Terminy, opredeleniya i oboznacheniya = Aircraft dynamics in atmosphere. Terms, definitions and symbols: gosudarstvennyi standart SSSR: izdanie ofitsialnoe: utverzhden i vveden v deistvie Postanovleniem Gosudarstvennogo komiteta SSSR po standartam ot 30 iyulya 1980 g. № 3913: data vvedeniya 1981–07–01. razrabotan Izdatelstvom standartov. Moskva: Izdatelstvo standartov. 1980. 54 s. (in Russian)
  15. Seregin V.V. Prikladnaya teoriya i printsipy postroeniya giroskopicheskikh sistem: uchebnoe posobie. SPb.: SPbGU ITMO. 2007. 78 s. (in Russian)
  16. Vavilova N.B., Golovan A.A., Parusnikov N.A. Kratkii kurs teorii inertsialnoi navigatsii: uchebnoe posobie. M.: IPU RAN. 2022. 148 s. (in Russian)
  17. Bondarev V.G. Videonavigatsiya letatelnogo apparata. Nauchnyi vestnik MGTU GA. Seriya: Avionika i elektrotekhnika. 2015. № 213. S. 65−72. (in Russian)
Date of receipt: 25.04.2025
Approved after review: 16.05.2025
Accepted for publication: 30.05.2025