R.A. Batashov1
1Plekhanov Russian University of Economics (Moscow, Russia)
1rusbatashov@gmail.com
The paper investigates methods for measuring the level of petroleum products using machine learning algorithms. Three approaches are considered: discrete, continuous and combined (discrete-continuous) measurement method. The main technological parameters of the operation of capacitive level meters for measuring the level of light petroleum products are highlighted. A combined method is considered that combines the advantages of discrete and continuous measurements, allowing minimizing systematic errors. A comparative analysis of the accuracy of various methods based on random forest modeling is carried out. Key statistical indicators such as MSE, MAPE, and R2 have been calculated, confirming that the combined method is significantly superior to traditional approaches in terms of prediction accuracy. Technical conclusions have been drawn confirming the effectiveness of using machine learning in this task.
Batashov R.A. Research of machine learning models in measuring the level of petroleum products with capacitive level meters. Information-measuring and Control Systems. 2025. V. 23. № 3. P. 27−36. DOI: https://doi.org/10.18127/j20700814-202503-03 (in Russian)
- Batashov R.A. Issledovanie modeli iskusstvennykh neironnykh setei pri obrabotke i analize dannykh s izmeritelnoi tekhniki. Informatsionno-izmeritelnye i upravlyayushchie sistemy. 2025. T. 23. № 1. S. 33−40. DOI: https://doi.org/10. 18127/j20700814-202550-04. (in Russian)
- Miriam Esteve, Juan Aparicio, Jesus J. Rodriguez-Sala, Joe Zhu. Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull. European Journal of Operational Research. 16 January 2023. V. 304, № 2. P. 729−744. DOI: https://doi.org/10.1016/j.ejor.2022.04.024.
- Godnev A.G. Shirokodiapazonnyi diskretno-nepreryvnyi datchik urovnya. Sistemnyi analiz, upravlenie i obrabotka informatsii v kosmicheskoi otrasli. 2015. № 3. S. 189−194. (in Russian)
- Pat. 2239164 RF, MPK 21V 47/00. Emkostnoi urovnemer so shtangoi. Godnev A.G., Suslov V.M.; zayavitel i patentoobladatel Godnev A.G.: opubl. v B.I., 2002, № 30. (in Russian)
- Gutnikov V.S. Integralnaya elektronika v izmeritelnykh ustroistvakh: Uchebnik dlya vuzov. L.: Energiya. 1980. 240 s. (in Russian)
- Grokholskii A.L., Gorbov M.M., Strunskii M.G., Fedotov V.K. Emkostnye pervichnye izmeritelnye preobrazovateli diametra neizolirovannogo mikroprovoda. Izmereniya, kontrol, avtomatizatsiya: Nauch.-tekhn. sb. obzorov. TsNII TEN priborostroeniya. M.: Akademiya, 1978. 256 s. (in Russian)
- Cheredov A.I. Preobrazovateli dlya elektricheskogo izmereniya parametrov emkostnykh datchikov. Dissertatsiya na soiskanie uchenoi stepeni kandidata tekhnicheskikh nauk. L.: Energiya. 1984. 233 s. (in Russian)
- Bukhgolts V.P., Tisevich E.G. Emkostnye preobrazovateli v sistemakh avtomaticheskogo kontrolya i upravleniya. M.: Energiya. 1972. 80 s. (in Russian)
- Knyazev A.D., Kechnev L.N., Petrov B.V. Konstruirovanie radioelektronnoi i elektronno-vychislitelnoi apparatury s uchetom elektromagnitnoi sovremennosti. M.: Radio i svyaz. 1989. 224 s. (in Russian)
- Leo Breiman. Sluchainye lesa. Mashinnoe obuchenie. 2001. T. 45. № 1. S. 5−32. doi:10.1023/A:1010933404324. (in Russian)
- Varnke-Vang M., Kosli D., Ridl Dzh. Rasskazhite mne bolshe: deistvennaya model kachestva. Materialy 9‑go Mezhdunar. simpoziuma po otkrytomu sotrudnichestvu (WikiSym '13). 2013. doi:10.1145/2491055.2491063. (in Russian)
- Mirkes E.M. Logicheski prozrachnye neironnye seti i proizvodstvo yavnykh znanii iz dannykh. Neiroinformatika. Gorban A.N., Dunin-Barkovskii V.L., Kirdin A.N. i dr. Novosibirsk: Nauka. Sibirskoe predpriyatie RAN. 1998. 296 s. (in Russian)

