350 rub
Journal Information-measuring and Control Systems №6 for 2024 г.
Article in number:
Ice thickness control based on the use of ultra-wideband signal-code structures
Type of article: scientific article
DOI: 10.18127/j20700814-202406-02
UDC: 004.93
Authors:

S.A. Nenashev1, A.R. Bestugin2, R.I. Chembarisova3, I.A. Kirshina4, V.A. Nenashev5

1−5 Saint Petersburg State University of Aerospace Instrumentation (Saint Petersburg, Russia)

2 fresguap@mail.ru, 3 renatachembarisova@yandex.ru, 4 ikirshina@mail.ru, 5 nenashev.va@yandex.ru

Abstract:

Nowadays, the application of ultra-wideband signal-code structures is one of the most demanded technologies realized in determining the depth of a particular layer or object in it, in particular, in determining the ice thickness of water surfaces. The latter requires to ensure high reliability and accuracy of ice-water partition boundary determination in order to control its thickness in the interests of environmental control.

The purpose of this study is to synthesize ultra-wideband signal-code designs and investigate their autocorrelation characteristics, which ensure the reliability of ice thickness measurement at all controlled areas of its presence – boundaries of "ice-water" partitions.

The result of the work is that found new values of elements and synthesized by them ultra-wideband signal-code designs. It is shown that the levels of side lobes of the normalized autocorrelation function of the synthesized ultra-wideband signal are lower than those of similar canonical signals, often used in practice.

Synthesis and application of new ultra-wideband signal-code designs provides improvement of their correlation characteristics and, as a consequence, provides reliable and accurate measurement when controlling ice thickness on various water bodies.

Pages: 13-22
For citation

Nenashev S.A., Bestugin A.R., Chembarisova R.I., Kirshina I.A., Nenashev V.A. Ice thickness control based on the use of ultra-wideband signal-code structures. Information-measuring and Control Systems. 2024. V. 22. № 6. P. 13−22. DOI: https://doi.org/10.18127/j20700814-202406-02 (in Russian)

References
  1. Rozhnev A.Yu., Kalinin P.M., Volynskaya A.V. Issledovanie nadezhnosti kombinirovannykh signalov Barkera. Sb. nauch. trudov "Aktualnye voprosy razvitiya sistem zheleznodorozhnoi avtomatiki i telemekhaniki. Pod red. V.V. Sapozhnikova. SPb.: Peterburgskii gos. un-t putei soobshcheniya. 2013. S. 87−92. (in Russian)
  2. Rosepreet K.B., Manoj S. Generation of Single Sideband-Suppressed carrier (SSB-SC) Signal Based on Stimulated Brillouin Scattering. Journal of Physics: Conference Series. V. 2327. 4th International Conference on Intelligent Circuits and Systems. 2327 (2022) 012025 IOP Publishing doi:10.1088/1742-6596/2327/1/012025.
  3. Dvornikov S.S., Zheglov K.D., Dvornikov S.V. Odnopolosno modulirovannyi signal s kontrolirovannym urovnem ostatka nesushchei. T-Comm: Telekommunikatsii i transport. 2023. T. 17. № 3. S. 41−47. https://doi.org/10.36724/2072-8735-2023-17-3-41-47. (in Russian)
  4. Kibirnichenko A.G., Kudryashov M.Yu., Khudanov A.A. Vliyanie parametrov radiolokatsionnykh dalnostnykh portretov tselei na kharakteristiki ikh obnaruzheniya izvestnymi obnaruzhitelyami sverkhshirokopolosnykh signalov. Radiotekhnicheskie i telekommunikatsionnye sistemy. 2015. № 3 (19). P. 26−33. (in Russian)
  5. Ipatov V. Shirokopolosnye sistemy i kodovoe razdelenie signalov: printsipy i prilozheniya. M.: Tekhnosfera. 2007. 488 s. (in Russian)
  6. Nikonov A.V., Nikonova G.V. Formirovanie sverkhshirokopolosnykh signalov s upravlyaemoi formoi. Dinamika sistem, mekhanizmov i mashin. 2012. № 1. S. 338−341. (in Russian)
  7. Shepeta A.P., Nenashev V.A., Isakov V.I., Sentsov A.A. Ultra-wideband signals in location measuring devices for generation and processing. St. Petersburg: St. Petersburg State University of Aerospace Instrumentation. 2020. 56 p. ISBN 978-5-8088-1523-0.
  8. Yang, Hongchao, Wang Yunjia, Xu Shenglei, Bi Jingxue, Jia, Haonan, Seow Chee Kiat. Ultra-Wideband Ranging Error Mitigation with Novel Channel Impulse Response Feature Parameters and Two-Step Non-Line-of-Sight Identification. Sensors. 24. 1703. 10.3390/s24051703.
  9. Lazarov A.A., Minchev C., Garvanov I. Barker Phase-Code-Modulation Waveform in ISAR Imaging System. 10.1007/978-3-031-23226-8_1.
  10. Maksimov V.A., Khrapovitsky I. New composite barker codes in the synchronization system of broadband signals. Information and Telecommunication Sciences. 24−30. 10.20535/2411-2976.22020.24-30.
  11. Soba J., Munir A., Suksmono A. Barker code radar simulation for target range detection using software defined radio. 271−276. 10.1109/ICITEED.2013.6676251.
  12. Maksimov V.V., Khrapovitsky I.A. New composite Barker codes. The Scientific Heritage. 2020. № 49-1(49). P. 28−35.
  13. Nenashev V.A., Bestugin A.R., Kirshina I.A., Nenashev S.A. Metodika poiska modifitsirovannykh kodovykh posledovatelnostei Barkera. T-Comm: Telekommunikatsii i transport. 2023. T. 17. № 12. S. 15−21. DOI 10.36724/2072-8735-2023-17-12-15-21. (in Russian)
  14. Srinivasu C., Monica Satyavathi D., Markandeya Gupta N. Performance Evaluation of UWB Waveforms in High-Resolution Radar. Chowdary P., Chakravarthy V., Anguera J., Satapathy S., Bhateja V. (eds). Microelectronics, Electromagnetics and Telecommunications. Lecture Notes in Electrical Engineering. 2021. V. 655. Springer. Singapore. https://doi.org/10.1007/978-981-15-3828-5_58.
  15. Taylor J.D., Boryssenko A., Boryssenko E. Signals, Targets and Advanced Ultrawideband Radar Systems. Advanced Ultrawideband Radar. eds. James D. Taylor. Boca Raton: CRC Press. 2016.
  16. Varlamov O.V. Construction of powerful broadband DC amplifiers of the modulation path of transmitters with separate amplification of the components. T-Comm: Telecommunications and transport. 2022. V. 16. № 11. P. 4−14. https://doi.org/10.36724/2072-8735-2022-16-11-4-14.
  17. Verba B.C., Tatarskii B.G., Ilchuk A.R., Lepekhina T.A., Maistrenko E.V., Merkulov V.I., Mikheev V.A., Neronskii L.B., Plyushchev V.A. i dr. Radiolokatsionnye sistemy aviatsionno-kosmicheskogo monitoringa zemnoi poverkhnosti i vozdushnogo prostranstva. M.: Radiotekhnika. 2014. 576 s. (in Russian)
  18. Dvornikov S.V., Dvornikov S.S., Zheglov K.D. Proactive monitoring of the suitability of radio channels in the frequency hopping mode. T-Comm: Telecommunications and transport. 2022. V. 16. № 11. P. 15−20. https://doi.org/10.36724/2072-8735-2022-16-11-15-20.
  19. Khanykov I.G., Nenashev V.A., Kharinov M.V. Algebraic Multi-Layer Network: Key Concepts. Journal of Imaging. 2023. 9(7):146. https://doi.org/10.3390/jimaging9070146.
  20. Brest J., Boskovic B. A heuristic algorithm for a low autocorrelation binary sequence problem with odd length and high merit factor. IEEE Access. 2018. V. 6. P. 4127–4134. https://doi.org/10.1109/ACCESS.2018.2789916.
  21. Jahangir K.K., Hashmi A. A Novel Non-Coherent Radar Pulse Compression Technique Based on Periodic M-sequences. Aerospace Science and Technology. 2016. 188–193.
  22. Slovak S., Galajda P., Hoffmann J., Kocur D. New ultra-wideband sensor system for measuring the properties of liquid materials. Proceedings of the 26th International Conference Radioelektronika. Kosice, Slovakia. 19–20 April 2016. P. 309–314.
  23. Xu Kaikai. Silicon electro-optic micro-modulator fabricated in standard CMOS technology as components for all silicon monolithic integrated optoelectronic systems. Journal of Micromechanics and Microengineering. 2021. 31. https://doi.org/10.1088/1361-6439/abf333.
  24. Shepeta A.P., Makhlin A.M., Nenashev V.A., Kryachko A.F. Performance of UWB Signal Detecting Circuits. Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). St. Petersburg. 2018. P. 1−4. https://doi.org/10.1109 /WECONF.2018.8604440.
Date of receipt: 18.10.2024
Approved after review: 08.11.2024
Accepted for publication: 28.11.2024