O.P. Kurkova1, V.I. Kazakov2, K.V. Serdiuk3
1−3St. Petersburg State University of Aerospace Instrumentation (St Petersburg, Russia)
1aljaskaolga@mail.ru, 2vasilykazakov@mail.ru, 3kserdiuk@yandex.ru
The main challenge in creating underwater Internet of Things (UIoT) applications is to select the appropriate type of communication system, which must take into account the unique conditions of the underwater environment and data transmission requirements. Unlike terrestrial systems, where RF channels are widely used, underwater conditions require other solutions, as radio waves are significantly attenuated in the water, severely limiting the transmission range. A specific and little-studied aspect of underwater communications is the use of Underwater Wireless Optical Communications (UWOC). This paper focuses on investigating the effect of the characteristics of the aquatic environment on UWOC performance.
The purpose of the study was to identify the relationship between the parameters of the aquatic environment and the UWOC channel in the interest of predicting the effectiveness of its application as part of UIoT networks, to substantiate the feasibility and prospects of using underwater optical wireless communications as part of distributed information and measurement systems.
The paper presents the results of research on the relationship between the parameters of the aquatic environment and the underwater optical wireless communication channel. The interrelation of optical characteristics of the aquatic environment with the indicators of efficiency and quality of underwater optical wireless communication: normalised power, communication range, bit error rate, in turn, affecting the accuracy and reliability of the information received by the Consumer at the output of the information-measuring system. The influence of water medium turbulence on the communication indicators is assessed. It is shown that changes in the salinity of the aquatic environment as one of the factors causing turbulence negatively affects the main indicators of underwater optical wireless communication. It is shown that the assessment of the feasibility of underwater optical wireless communication should be made on the basis of a detailed analysis of the parameters of the aquatic environment of the water area in which its implementation is planned. The obtained results confirm the possibility and perspectivity of using underwater optical wireless communication as a part of distributed information-measuring systems on underwater objects located in different types of water areas.
Kurkova O.P., Kazakov V.I., Serdiuk K.V. Influence of the parameters of the aquatic environment on the functioning of wireless channels optical underwater communication in information and measurement systems. Information-measuring and Control Systems. 2024. V. 22. № 4. P. 45−52. DOI: https://doi.org/10.18127/j20700814-202404-05 (in Russian)
- Vlasov A.A., Rodionov A.Yu. Perspektivy ispolzovaniya sistem podvodnoi kommunikatsii na osnove magnitnoi induktsii (obzor). Vestnik inzhenernoi shkoly Dalnevostochnogo federalnogo universiteta. 2021. № 2(47). S. 36−49. (in Russian)
- Martynov V.L., Golosnoi A.S., Egorov S.V. Besprovodnoi opticheskii kanal svyazi v vodnoi srede kak alternativa svyazi po kabelyu. Izvestiya Rossiiskoi Akademii raketnykh i artilleriiskikh nauk. 2016. № 4(94). S. 126−130. (in Russian)
- Martynov V.L., Doroshenko V.I., Bozhuk N.M., Ksenofontov Yu.G. Lazernye tekhnologii peredachi dannykh v vodnoi srede v voprosakh organizatsii podvodnykh besprovodnykh setei svyazi. Morskie intellektualnye tekhnologii (nauchnyi zhurnal). 2021. № 2(1). S. 80−85. (in Russian)
- Shirokov I.B., Golovin V.V., Redkina E.A., Serdyuk I.V., Ovcharov P.P. Prakticheskie aspekty postroeniya sistem besprovodnoi podvodnoi opticheskoi svyazi dlya telekommunikatsionnykh prilozhenii. RENSIT: Radioelektronika. Nanosistemy. Informatsionnye tekhnologii. 2024. № 16(1). S. 31−42. (in Russian)
- Ksenofontov Yu.G. Podvodnaya opticheskaya besprovodnaya svyaz kak sredstvo povysheniya effektivnosti informatsionno-telekommunikatsionnogo obespecheniya glubokovodnykh issledovanii. Sovremennye innovatsii, sistemy i tekhnologii. 2023. № 3(3). S. 132−145. (in Russian)
- Kurkova O.P. Imitatsionnaya model priemnika lazernogo izlucheniya sistemy obnaruzheniya i preduprezhdeniya o lazernom obluchenii bespilotnykh letatelnykh apparatov. Sistemy upravleniya, svyazi i bezopasnosti. 2023. № 4. S. 36−62. URL: https://sccs.intelgr.com/archive/2023-04/02-Kurkova.pdf (data obrashcheniya 25.03.2024). (in Russian)
- Kuznetsov S., Ognev B., Polyakov S. Sistema opticheskoi svyazi v vodnoi srede. Pervaya milya. 2014. № 2. S. 46−51. (in Russian)
- Sun K., Li Y., Han Z. Research on Underwater Wireless Optical Communication Channel Model and Its Application. Journal Applied Sciences. 2023. V. 14. 15 p. DOI: 10.3390/ app14010206. URL: https://www.mdpi.com/2076-3417/14/1/206/pdf (data obrashcheniya 17.04. 2024).
- Mankovskii V.I. Osnovy optiki okeana: metodicheskoe posobie. Sevastopol: Morskoi gidrofizicheskii institut. 1996. 119 s. (in Russian)
- Ali M.F., Jayakody D.N.K., Li Y. Recent trends in underwater visible light communication (UVLC) systems. IEEE Access. 2022. V. 10. R. 22169−22225.
- Jiang H., He N., Liao X., Popoola W., Rajbhandari S. The BER Performance of the LDPC-Coded MPPM over Turbulence UWOC Channels. Photonics. 2022. V. 9. 349 p.
- Xu X., Li Y., Huang P., Ju M., Tan G. BER Performance of UWOC with APD Receiver in Wide Range Oceanic Turbulence. IEEE Access. 2022. V. 10. P. 25203−25218.
- Jamali M.V., Nabavi P., Salehi J.A. MIMO Underwater Visible Light Communications: Comprehensive Channel Study, Performance Analysis and Multiple-Symbol Detection. IEEE Trans. Veh. Technol. 2018. V. 67. R 8223−8237.
- Deng B., Wang J., Wang Z.; Qasem Z.A.H., Li Q., Tang X., Chen C., Fu H.Y. Polarization Multiplexing Based UOWC Systems Under Bubble Turbulence. Journal of Lightwave Technology. 2023. V. 41. P. 5588−5598.